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A B S T R A C T   

Digital soil mapping combines soil plot data with environmental datasets to model variation in soil properties 
across a landscape. The quality of a digital soil map depends on both the quantity and distribution of soil plots 
within the study extent. Field campaigns to acquire soil data are time intensive and costly to undertake, requiring 
training and deployment of field crews and soil processing/analytical costs. Therefore, it is important to optimize 
site selection and sampling intensity to maximize digital soil map accuracy and minimize field costs. In many 
cases, soil sampling occurs across several years to gather sufficient soil data. Between successive field campaigns, 
preliminary digital soil maps and their corresponding uncertainty estimates can be generated. We hypothesize 
that preliminary uncertainty maps can be useful to guide sampling in subsequent field seasons by targeting areas 
of high uncertainty to significantly improve model accuracy. This hypothesis was tested by simulating a multi- 
year soil sampling campaign using an extensive soil moisture regime and soil texture dataset from the Hearst 
Forest in northeastern Ontario, Canada. We quantified how soil maps and soil models changed as new data points 
were added and how model/map improvement was influenced by performing additional sampling in areas of 
high uncertainty. We used multiple uncertainty metrics (Ignorance Uncertainty, Exaggeration Uncertainty and 
Confusion Index) and tested multiple levels of sampling intensity. The results showed modest but statistically 
significant improvements in model accuracy when subsequent sampling was targeted in high uncertainty areas 
(treatments) compared to sampling in random areas (controls) (38.7% control accuracy compared to 39.8%/ 
40.4%/40.3% for moisture regime and 23.1% control accuracy compared to 24.3%/25%/24.9% for textural 
class). There were no significant differences in model performance between the three uncertainty metrics. The 
most common textural and moisture regime classes in the soil dataset rarely occurred in areas of high uncertainty 
suggesting that the environmental covariates used in the study tracked real soil variation. As subsequent sam
pling intensity increased, model performance increased as well (both in the control and treatment groups). There 
was also a significant treatment × sampling intensity interaction meaning that uncertainty guided sampling was 
increasingly beneficial as sampling effort increased. This paper demonstrates a proof of concept that generating 
preliminary uncertainty maps in digital soil mapping can be a useful tool for informing future field soil sample 
collections to improve model performance.   

1. Introduction 

Digital soil mapping (DSM) predicts soil variation across space by 
modelling the relationship between georeferenced soil observations and 
environmental covariates (McBratney et al., 2003; Scull et al., 2003; 
Minasny and McBratney, 2016). DSM accuracy depends not only on the 
size and quality of the input soil data (Grinand et al., 2008; Yang et al., 
2016), but also on how well the soil sampling locations capture the 
variability of the soil and environmental properties (Biswas and Zhang, 

2018). Therefore, to generate high quality soil maps, it is important to 
design soil sampling campaigns to optimize sampling size and sampling 
locations, given limited sampling time and financial costs. To this end, 
various approaches have been proposed in the literature to optimize soil 
sampling. These approaches aim to distribute sampling in structured 
ways throughout the study extent such that spatial and/or environ
mental variability is captured during sampling (Minasny and McBrat
ney, 2006; Brus and Heuvelink, 2007; Vašát et al., 2010; Szatmári et al., 
2019; Wadoux et al., 2019). Incorporating structured approaches to soil 
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sampling has been shown to improve digital soil map predictive accu
racy. (for a review, see: Biswas and Zhang, 2018). 

In tandem with structured sampling, incorporating previously 
collected soil data into DSM projects is another way to improve DSM 
performance. Legacy or existing soil data can supplement new soil 
sampling campaigns to generate a larger soil dataset (Bui and Moran, 
2003; Odgers et al., 2014). Additionally, adaptive sampling designs, 
which use previous soil samples and soil spatial dependence models to 
guide additional sampling, can be employed to optimize sampling across 
space (Marchant and Lark, 2006; Musafer and Thompson, 2016). 
Finally, it is also possible to use uncertainty estimates of preliminary soil 
map predictions and then conduct subsequent sampling in areas of high 
uncertainty. For example, Huang et al. (2020) investigated the use of 
uncertainty maps for improving Gamma-ray potassium measurements 
on an agricultural field. In that study, Huang et al. (2020) acquired 10 
initial soil samples; predicted the spatial distribution of the target var
iable using linear mixed model; generated local uncertainty estimates; 
and selected the next sampling locations based on uncertainty and travel 

time. Their results demonstrated that the adaptive sampling approach 
was more effective than applying a gridded or simple random sampling 
approach. Similarly, Stumpf et al. (2017) applied an approach for pre
dicting particle size fractions and showed that uncertainty-guided 
sampling resulted in increased accuracy and decreased uncertainty. 
These uncertainty-guided approaches take advantage of a benefit of 
DSM over conventional soil mapping, in that DSM can provide uncer
tainty estimates of the soil model and map predictions (Malone et al., 
2011; Minasny and McBratney, 2016). 

In digital soil mapping, uncertainty can arise from errors in soil 
measurement, geolocation, digitization, data generalization, and inter
polation (Arrouays et al., 2014b), as well as from modelling bias, 
parameterization, and predictive modelling errors associated with 
modelling the relationship between the predictor and response variables 
(Minasny and McBratney, 2002). When applied to DSM, a key outcome 
is the evaluation of spatially explicit uncertainty (i.e., “local error”), 
which provides an estimation of the predictive model uncertainty on a 
pixel-by-pixel basis. Uncertainty maps not only show where model 

Fig. 1. Distribution of soil points within Hearst Forest. Inset: Hearst Forest with respect to Ontario, Canada.  
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biases may occur, but can also influence soil map application, since users 
may be more hesitant to rely on the soil map in areas of high uncertainty. 
For predicting continuous variables, local error may be represented as a 
prediction interval (e.g., the 90% prediction interval width; Arrouays 
et al., 2014a). In comparison, uncertainty in categorical variable pre
dictions may be quantified through analysis of class probability layers. 
These layers may be generated using specific machine-learning models 
(e.g., support vector machines, Random Forest, and k-nearest neighbors) 
or by using a bootstrapping procedure (Heung et al., 2017). Some ex
amples of uncertainty metrics for categorical variables include igno
rance uncertainty (IU, Leung et al., 1993; Goodchild et al., 1994; Zhu, 
1997; Heung et al., 2017), exaggeration uncertainty (EU, Zhu, 1997), 
and confusion index (CI, Burrough et al., 1997; Chaney et al., 2016). 
These metrics are calculated using class probability layers and evaluate 
the divergence of probability values across classes, whereby pixels with 
similar probability values for multiple classes will result in higher un
certainty. It has been suggested that these uncertainty analyses can be 
used to evaluate the quality of predictions, carry out sensitivity analysis 
on model variables, and identify where to allocate resources for the 
purposes of reducing uncertainty (Minasny and Bishop, 2008). 

Despite the findings of Stumpf et al. (2017) and Huang et al. (2020), 
there has been little investigation into the use of uncertainty-guided 
sampling when categorical variables are being predicted. Furthermore, 
there are multiple metrics representing uncertainty for categorical var
iables as well (e.g., IU, EU, and CI) and it is unclear which, if any, of 
these metrics are best to inform future sampling locations. In this paper, 
we tested if using uncertainty evaluations of a digital soil map to guide 
subsequent sampling improves digital soil mapping performance. We 
used a large existing soil dataset in Hearst Forest, Ontario (Canada) to 
predict the categorical variables soil moisture regime and textural class. 
We simulated an adaptive soil sampling campaign by generating an 
initial DSM on a subset of the soil dataset; running an uncertainty 
analysis of the predictions; then updating the model/map with addi
tional sample locations to simulate multiple field seasons. In Study 1, we 
tested: Does additional sampling in areas of high uncertainty (based on a 
preliminary digital soil map) significantly improve DSM performance 
compared to additional random sampling? This was tested using three 
different uncertainty metrics (IU, EU, and CI) to determine if certain 
uncertainty metrics perform better than others. We expected all digital 
soil models to improve with additional sampling but for that improve
ment to be more significant when these points come from areas of high 
uncertainty. Additionally, we qualitatively explored the relationship 
between uncertainty and soil class frequency in the original dataset. We 
expected soil classes that are underrepresented in the soil dataset will be 
found in areas of higher uncertainty. 

In Study 2, we quantified how increasing sampling effort improved 
digital soil model performance. This was done by adding an increasing 
number of additional sampling points in high uncertainty areas versus 
adding additional sampling points in random areas. We expected 
increasing sampling within high uncertainty areas will improve model 
performance compared to random sampling, although there may be a 
point at which we observe diminishing returns. It is unclear what, if any, 
interaction there is between uncertainty-guided sampling and sampling 
intensity (i.e., are the effects of sampling in areas of high uncertainty 
more noticeable when added few or many additional soil samples?) 

2. Methods 

2.1. Study area 

The Hearst Forest, located in northeastern Ontario, Canada 
(49◦41′’16" N, 83◦40’21" W) is a large, managed forest (approximately 
15,218 km2) (Fig. 1). This forest was chosen as our study area because of 
the availability of a high-resolution light detection and ranging (LiDAR) 
derived digital elevation model (DEM), and the availability of a large 
soil pedon dataset. A full description of the study area and soil data can 

be found in Blackford et al. (2021). The forest sits on the Precambrian 
Shield, covered by Quaternary age sediments (Blackburn et al., 1985; 
Mackasey et al., 1974; Thurston et al., 1991). Clay plains occupy the 
northern and central areas of the forest (commonly known as the Clay 
Belt), which were deposited during inundation by the proglacial Lake 
Barlow-Ojibway about 9000 years ago (Dyke, 2004). In other areas of 
the forest, loamy and sandy soils can be found (Hearst Forest Manage
ment, 2019). Many soils are poorly drained and organic soil is common 
throughout (Hearst Forest Management, 2019). Esker complexes from 
previous glaciation can be found in the centre of the forest. Overall, the 

Table 1 
Environmental covariates used in DSM for Hearst Forest.  

Covariate Measuring Data source 

Aspect Local Relief DEM 
Downslope curvature Local Relief DEM 
General curvature Local Relief DEM 
Local downslope curvature Local Relief DEM 
Local curvature Local Relief DEM 
Local upslope curvature Local Relief DEM 
Maximum curvature Local Relief DEM 
Minimum curvature Local Relief DEM 
Multiresolution ridgetop flatness (Gallant and 

Dowling, 2003) 
Local Relief DEM 

Multiresolution valley bottom flatness (Gallant 
and Dowling, 2003) 

Local Relief DEM 

Multi-scale topographic position index Local Relief DEM 
Mid-slope position Local Relief DEM 
Normalized height Local Relief DEM 
Planar curvature Local Relief DEM 
Profile curvature Local Relief DEM 
Real surface area Local Relief DEM 
Slop Local Relief DEM 
Slope height Local Relief DEM 
Tangential curvature Local Relief DEM 
Topographic negative openness Local Relief DEM 
Total curvature Local Relief DEM 
Topographic positive openness Local Relief DEM 
Terrain ruggedness index (Riley et al., 1999) Local Relief DEM 
Terrain surface concavity Local Relief DEM 
Terrain surface convexity Local Relief DEM 
Upslope curvature Local Relief DEM 
Upslope height Local Relief DEM 
Valley depth Landscape 

relief 
DEM 

Catchment area Hydrology DEM 
Catchment slope Hydrology DEM 
Modified catchment area Hydrology DEM 
Topographic wetness index Hydrology DEM 
Distance to stream Landscape 

relief 
Hydrology 
shapefile 

Distance to water body Landscape 
relief 

Hydrology 
shapefile 

Overstory height Organisms FRI shapefile 
Understory height Organisms FRI shapefile 
Overstory leading species Organisms FRI shapefile 
Understory leading species Organisms FRI shapefile 
Bedrock geology Parent 

material 
Geology 
shapefile 

Quaternary geology Parent 
material 

Geology 
shapefile 

Distance from centre of study extent Spatial 
position 

NA 

Distance from Northeast extent point Spatial 
position 

NA 

Distance from Northwest extent point Spatial 
position 

NA 

Distance from Southeast extent point Spatial 
position 

NA 

Distance from Southwest extent point Spatial 
position 

NA 

Distance along x axis Spatial 
position 

NA 

Distance along y axis Spatial 
position 

NA  
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Hearst Forest is of moderate relief and representative of the 3E Boreal 
Shield ecoregion within Ontario (Crins et al., 2009). 

2.2. Soil data 

A combination of previously gathered federal, provincial, and tar
geted soil pedon data was used. These data came from Forest Resource 
Inventory surveys, National Forest Inventory plots, Provincial Growth 
and Yield plots, and Forest Ecological Classification plots. Altogether, 
these datasets contain 7893 spatial soil records within the Hearst 
(Fig. 1). From this dataset, we chose to model soil moisture regime and 
soil textural class (Johnson et al., 2015) as these were the most abundant 
soil variables measured with 7734 records of soil moisture regime class 
and 7213 records of textural class. Soil moisture regime is a relative 
ranking system that describes the soil’s moisture supply during the 
growing seasons and is based on soil texture, pore patterns, soil depth, 
landscape position, and drainage. Textural classes are defined as the 

“effective texture” found at a site (i.e., the dominant soil texture of the 
pedon). These textural classes were either classified as organic, or if a 
mineral soil was present, by the relative proportions of sand, silt, and 
clay. 

2.3. Environmental data 

Table 1 shows the list of environmental predictors layers used to link 
to soil variation across space. These environmental predictors repre
sented relief, hydrology, biota, geology, and spatial distance within the 
study area. A 10 × 10 m resolution LiDAR DEM was used to derive 
topographic metrics. The DEM was “smoothed” (locally averaged) by 
passing a 81 × 81 cell moving window filter across the extent which 
averaged the elevation vales within the window. This smoothing process 
was performed to reduce the effects of spatially uncorrelated noise from 
LiDAR derived DEMs and to remove their anomalous pits and peaks (Li 
et al., 2011). The derived topographic metrics characterized local-scale 

Fig. 2. Workflow for testing DSM upon addition of more soil datapoints. This workflow is repeated for multiple splits of Dataset 1/Dataset 2/ Validation dataset to 
ensure results are consistent no matter how dataset is split. 
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morphometry (e.g., slope, aspect, curvature), landscape-scale 
morphometry (e.g., topographic position index), and hydrology (e.g., 
topographic wetness index, valley depth, catchment area). These metrics 
were calculated using the SAGA program (Conrad et al., 2015), run 
through R (R core team, 2019). A distance to river and lakes layer was 
generated to correspond to landscape-relief patterns. Two geology layers 
were used to represent bedrock and sedimentation characteristics. 
Forestry layers of overstory height, understory height and overstory 
leading species (i.e., most common species) were used to represent biotic 
factors. Finally, Euclidean distance fields were used to incorporate 
spatial position into predictions (i.e., to account for spatial autocorre
lation). Overall, 47 covariates were used (Table 1). 

2.4. Machine learning model parametrization 

All soil models/maps in this study were generated using the same 
machine learning modelling design. We used the Random Forest model 
to link the soil dataset with the environmental covariates as this model 
has been shown in previous work to perform well in our study area 
(Blackford et al., 2021). We partitioned the soil-environmental dataset 
for training and validation by performing a 10-fold cross validation, 
repeated 10 times. Values of the mtry hyperparameter, the main tuning 
parameter of Random Forest, were tested at values ranging from 3 to 15. 
(A common recommendation is to set mtry as the square root of the 
number of predictors; in our case 7.) 751 trees were generated for each 
Random Forest model. All simulations and data analysis were performed 
in R (R Core Team, 2019), using the doParallel (Microsoft Corporation 
and Weston, 2019), caret (Kuhn et al., 2019), raster (Hijmans, 2019), 
rgdal (Bivand et al., 2019), rgeos (Bivand and Rundel, 2019), and tidy
verse (Wickham et al., 2019) packages. 

2.5. Uncertainty analysis of digital soil map 

For a digital soil map generated with the Random Forest model, 
uncertainty can be quantified for each pixel through the distribution of 
tree votes (within the Random Forest) between soil classes (Chaney 
et al., 2016; Stumpf et al., 2017). Three metrics of uncertainty were 
examined. 

Ignorance uncertainty (IU; Leung et al., 1993; Zhu, 1997) is defined 
as: 

IU(x) = −
1

ln(n)
∑n

i=1
Pi(x)*ln(Pi(x) ) (1)  

where, for each pixel (x), n is the number of classes of the soil attribute 
being predicted and Pi(x) is the proportion of votes that class i was given 
from the Random Forest model. When all the votes (i.e., trees) are 
assigned to a single class, IU = 0 (smallest uncertainty possible). When 
votes are assigned equally between classes, IU = 1 (highest uncertainty 
possible). 

Exaggeration uncertainty (EU; Zhu, 1997) is defined as: 

EU(x) = 1 − Pmax(x) (2)  

where, for each pixel (x), Pmax is the highest proportion of votes given to 
any class. In other words, Pmax is the proportion of votes given to the 
predicted soil class the Random Forest model makes. When all the votes 
(i.e. trees) are given to a single class, EU = 0. The value of Pmax cannot be 
lower than the reciprocal of the number of soil classes being predicted, 
thus the low limit of EU is bound by: 1–1/n, where n is the number of soil 
classes being predicted. 

Confusion index (CI; Burrough et al., 1997; Chaney et al., 2016) is 
defined as: 

CI(x) = 1 − (Pmax(x) − Pmax− 1(x) ) (3)  

where, for each pixel (x), Pmax is the highest proportion of votes given to 

any class and Pmax – 1 is the second highest proportion of votes given to 
any class. When all the votes are given to a single class, CI = 0. The 
lowest value CI could take would occur when the dominant class (Pmax) 
has a very similar proportion of votes to the second-most dominant class 
(Pmax – 1) and CI ~ 1. Setting the number of trees the Random Forest 
generates as an odd number, ensures there will never be an exactly even 
vote spilt (e.g., here we set number of trees = 751)—although in prac
tice, this rarely occurs. 

2.6. DSM workflow to simulate a sequential soil sampling campaign 

Our workflow was designed to simulate a DSM project where multi- 
year soil sampling occurred. We built upon a previously developed 
procedure for DSM in forestry (Blackford et al., 2021) to generate 
multiple digital soil models/maps. We simulated a repeated soil sam
pling campaign in the Hearst Forest wherein the following steps were 
performed (Fig. 2):  

1) The full soil pedon dataset (7893 observations) was randomly split 
into three datasets: “Dataset 1”, “Dataset 2”, and a “Validation 
dataset”. The breakdown of number of observations in each dataset 
differed between study 1 and 2 (see next section.) Datasets 1 was 
used to simulate an initial soil sampling campaign. Dataset 2 was 
used to identify potential locations that could be sampled in a sub
sequent sampling campaign. The validation dataset was withheld to 
generate an unbiased estimate of model performance.  

2) From Dataset 1, we generated an initial digital soil map (Model 1). 
Uncertainty was calculated using each uncertainty metric described 
above (IU, EU, CI) using class probability layers returned from the 
Random Forest model. Because the locations for subsequent soil 
sampling (i.e., Dataset 2) were acquired from a previously gathered 
dataset, we only calculated uncertainty in pixels where soils data was 
recorded, which helped reduce processing time.  

3) Dataset 2 was subset to identify areas of high uncertainty to guide 
further “sampling” (i.e., simulated sampling). In Study 1, for the high 
uncertainty treatment, 500 points with the highest uncertainty 
values (IU, EU, or CI) were sampled from Dataset 2 to represent the 
additional soil sampling. For the random treatment, 500 points were 
randomly sampled from Dataset 2. In Study 2, a similar sampling 
approach was taken but we varied the number of points in the subset 
to determine if there was an interaction between dataset size, un
certainty treatment, and model performance.  

4) Random Forest was run on Dataset 3 (Dataset 1 plus subset of Dataset 
2) to generate an updated digital soil model (model 2). 

5) Model 1 and Model 2 performance was validated using the Valida
tion dataset. Model improvement was assessed by comparing the 
accuracy and kappa scores of the models. 

Since the workflow involved withholding portions of the dataset for 
later inclusion and validation, model performance depended upon how 
the dataset was initially split (in Steps 1 and 2). To account for this, we 
replicated the workflow 30 times (i.e., 30 simulations) to account for 
performance variability in the initial and updated model (i.e., Models 1 
and 2). The code used to run this workflow is freely available online 
(Blackford, 2022) 

2.6.1. Study 1: Does additional sampling in areas of high uncertainty 
improve model performance? 

Using the workflow described above, to test if sampling in areas of 
high uncertainty improves model performance over random sampling, 
the number of datapoints in each dataset were as follows: Dataset 1 
contained 500 points for both moisture regime and textural class. 
Dataset 2 (initial size before uncertainty subset) contained 6000 points 
for both moisture regime and textural class. 500 points were subset from 
Dataset 2 in either areas of high uncertainty (uncertainty treatment) or 
randomly (control treatment). Dataset 1 was then combined with this 
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subset to create Dataset 3 of 1000 points (Dataset 1 + 500 points of 
Dataset 2). The validation dataset contained the remaining number of 
datapoints, which was 1234 for moisture regime and 713 for textural 
class. We recognize that 500 points is often more than would be captured 
in a single field season, however, these numbers were chosen to test a 
proof-of-concept that incorporating uncertainty can improve model 
predictions. 

One-sided paired t-tests were performed to determine if accuracy and 

kappa scores were higher in Model 2 compared to Model 1. We per
formed Wilcoxon signed-rank tests to determine if the Model 2 treat
ment outperformed the Model 2 control. p values and effect sizes 
(Cohen’s d and Pearson’s r). 

The distribution of soil classes from the high uncertainty points was 
also qualitatively compared to the distribution of soil classes across the 
entire soil dataset (Fig. 3) to determine if certain soil classes are iden
tified as more uncertain to predict than others (i.e., are some soil classes 

Fig. 3. (A–B). Breakdown of soil classes in (A) moisture regime and (B) textural class.  
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overrepresented in areas of high uncertainty). 
Finally, to benchmark the performance of round 1 and 2 models, we 

generated digital soil maps (30 simulations) using the entirety of Dataset 
1 and Dataset 2. These “benchmarked” model were used to confirm that 
differences observed between round 1 and round 2 models were legiti
mate. If no differences were observed in performance between these 
benchmarked models and the round 2 models, it would indicate that 
model performance has hit a theoretical maximum performance. This 
could be caused by errors in the soil data or machine learning modelling 
process. In contrast, if these benchmarked models are significantly more 
accurate than the round 2 models, it means differences between the 
round 1 and 2 models are valid. In other words, lack of improvement of 

round 2 models over round 1 models would not be due to the machine 
learners have hit some theoretical maximum performance wherein 
performance cannot increase regardless of additional data. 

2.6.2. Study 2: How does sampling effort modulate the effect of 
incorporating uncertainty into sampling? 

Using the workflow described above, to determine how model 
improvement is affected by subsequent sampling effort, different 
quantities of data were sampled from Dataset 2. The number of data
points in each dataset were as follows: Dataset 1 contained 300 points 
for both moisture regime and textural class. Dataset 2 (initial size before 
uncertainty filter) contained 6000 points for both moisture regime and 

Fig. 4. (A–B). Accuracy and Kappa improvement for moisture regime upon addition of subsequent data selected randomly or from areas of high uncertainty as 
defined by Ignorance Uncertainty (IU), Exaggeration Uncertainty (EU), and Confidence Index (CI). 
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textural class. The top 300, 600, 900, or 1200 points of highest uncer
tainty were sampled (uncertainty treatment) or randomly sampled 
(control) from Dataset 2. The validation dataset contained the remaining 
number of datapoints, which was 1234 points for moisture regime and 
713 points for textural class. Because Study 1 showed model improve
ment did not depend upon uncertainty metric, we performed Study 2 
only using the Confidence index (CI) uncertainty metric. Multiple 
regression was performed to determine the effect of sample size, un
certainty treatment and the sample size × uncertainty interaction on 

model performance. 

3. Results 

3.1. Study 1: Does additional sampling in areas of high uncertainty 
improve model performance? 

3.1.1. Comparing soil points of high uncertainty across metrics 
The top 500 high uncertainty points showed some similarity across 

Fig. 5. (A–B). Accuracy and Kappa improvement for textural class upon addition of subsequent data selected randomly or from areas of high uncertainty as defined 
by Ignorance Uncertainty (IU), Exaggeration Uncertainty (EU), and Confidence Index (CI). 
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Table 2 
Summary statistics from Wilcoxon signed-rank tests comparing the round 2 control models to the round 2 treatment models.  

Variable Metric Random (control) 
mean 

IU 
mean 

EU 
mean 

CI 
mean 

IU p 
value 

IU effect size 
(r) 

EU p 
value 

EU effect size 
(r) 

CI p 
value 

CI effect size 
(r) 

M Accuracy 38.7 39.8 40.4 40.3 3.71E-04 0.65 5.36E-06 0.83 3.16E-05 0.76 
M Kappa 23.1 24.3 25 24.9 5.66E-04 0.63 2.36E-07 0.94 1.95E-05 0.78 
T Accuracy 0.43 0.45 0.44 0.45 3.03E-04 0.66 1.42E-03 0.58 2.03E-05 0.78 
T Kappa 0.27 0.29 0.28 0.29 3.53E-05 0.76 2.53E-04 0.67 9.96E-07 0.89  

Fig. 6. Study 1 initial Digital Soil Map for Moisture Regime and Textural Class.  
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uncertainty metrics (Fig. S1). On average, for moisture regime, the IU 
and CI metrics shared 19.6% (98/500) of the same points, the EU and CI 
metrics shared 40.4% (202/500) of the same points, and the IU and EU 
metrics shared 49.8% (249/500) of the same points. Across all metrics 
(IU, EU, and CI), 17.2% (86/500) of the same points were identified as 
high uncertainty. On average, for textural class, the IU and CI metrics 
shared 24.8% (124/500) of the same points, the EU and CI metrics 
shared 44.8% (224/500) of the same points, and the IU and EU metrics 
shared 57.2% (286/500) of the same points. Across all metrics (IU, EU, 

and CI), 23% (115/500) of the same points were identified as high 
uncertainty. 

3.1.2. Soil class values association with high uncertainty 
In the control treatment, the relative frequency of each soil class was 

similar to the relative frequency of classes for the entire dataset (blue 
lines in Figs. S2–S4). For the high uncertainty treatments, there were 
much fewer points chosen in the dominant class for both moisture 
regime and textural class (i.e., “Moderately wet” and “Organic”, 

Fig. 7. Digital Soil Maps for inclusion of points from random spatial locations for Moisture Regime and Textural Class.  
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respectively). 
In the high IU treatment, the dominant “Moderately wet” moisture 

regime class was 10.0% less common than the control and the dominant 
“Organic” textural class was 19.3% less common than the control 
(Fig. S2). In the high EU treatment, the “Moderately wet” class was 
9.49% less common, and the “Organic” textural class was 18.6% less 
common (Fig. S3). In the high CI treatment, the “Moderately wet” class 

was 8.5% less common and the “Organic” class was 16.2% less common 
(Fig. S4). 

3.1.3. Model improvement upon additional sampling in areas of high 
uncertainty 

Additional sampling significantly improved model accuracy and 
kappa (Figs. 4–5). When comparing between the round 1 model and the 

Fig. 8. Digital Soil Maps for inclusion of points from areas of high uncertainty as defined by Ignorance Uncertainty (IU) metric for Moisture Regime and 
Textural Class. 
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round 2 control (random point addition) model, accuracy improved 
from 34.8% to 38.7% for moisture regime (t(29) = 19.3, p < 0.001, 
Cohen’s d = 3.52) and from 39.3% to 43.3% for texture class (t(29) =

15.8, p < 0.001, Cohen’s d = 2.89). The round 2 control also improved 
kappa from 0.18 to 0.23 for moisture regime (t(29) = 19.3, p < 0.001, 
Cohen’s d = 3.52) and from 0.21 to 0.27 for texture class (t(29) = 17.5, p 
< 0.001, Cohen’s d = 3.19). 

All high uncertainty treatments improved model performance 
compared to the control (random point addition) (Figs. 4–5, Table 2). 
Wilcoxon signed-rank tests showed significant improvement when 
comparing treatments to the control with all p values significant at p <
0.001 and effect sizes all at r > 0.50 (Table 2). 

The benchmarked models had significantly higher accuracy and 
kappa scores compared to the round 2 CI treatment. Average accuracy 

Fig. 9. Digital Soil Maps for inclusion of points from areas of high uncertainty as defined by Exaggeration Uncertainty (EU) metric for Moisture Regime and 
Textural Class. 
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for moisture regime was 59.8% (p < 0.01) and average kappa was 0.51 
(p < 0.01). Average accuracy for textural class was 64.3% (p < 0.01) and 
average kappa was 0.56 (p < 0.01). 

3.1.4. Soil maps 
To simplify soil map analysis, we analyzed the soil maps produced 

using the models with the median accuracy across our 30 simulations. 
The soil maps generated from the round 1 models with median accuracy 

predicted a substantial amount of area included in the organic and 
moderately wet classes (Fig. 6). This aligns with our prior knowledge of 
soil in the Hearst Forest as well as the distribution of soil values in the 
dataset (Fig. 3). Drier, sandier soils were predicted in the central and 
central-west areas of the forest which correspond to areas of higher 
elevation. The moisture regime and textural class maps covary with each 
other since soil texture is a criterium in assigning moisture regime values 
(Johnson et al., 2015). For illustrative purposes, uncertainty maps were 

Fig. 10. Digital Soil Maps for inclusion of points from areas of high uncertainty as defined by Confidence Index (CI) metric for Moisture Regime and Textural Class.  
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also generated from the round 1 model with the median accuracy 
(Figs. S5, S6). No analyses were performed on these uncertainty maps 
since we already quantify links between uncertainty and soil prediction 
in this section and in Sections 3.1.2, 3.1.3, but they may serve as useful 
visual aids for readers. 

There was moderate similarity between the soil map generated from 
the round 1 model and the soil map generated from the round 2 model 
supplemented with data from random locations (Fig. 7). In the updated 
map, soil classes from minority classes were more common 

(Tables S1–S2). For example, sandy textural classes were more common 
in the central-west portion of the map (Figs. 6–7) and the “very moist” 
moisture regime class was overall more common in the round 2 map 
compared to the round 1 map (Tables S1–S2). The updated map pre
dicted an increase in the majority class for textural class (Organic) but a 
decrease in the majority class (Moderately Wet) for moisture regime. 
The updated model predicted organic material occurring in 4.1% 
(618km2) more of the study area than in the round 1 model (Table S1). 
The updated model predicted the Moderately Wet class occurring in 

Fig. 11. Model accuracy of as a function of subsequent sample size and whether additional data came from areas of high uncertainty or were sampled randomly for 
(A) moisture regime and (B) textural class. 
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1.8% (177km2) less of the study area than in the round 1 model 
(Table S2). 

The soil maps produced from the round 2 treatment models all 
agreed with our understanding of soil variation in the region. However, 
there were a few key differences when comparing between the maps 
generated from round 2 models with random point addition in com
parison to the high uncertainty point addition treatments. For textural 
class, on average, Organic was predicted in 9.4% (1426 km2) less of the 
study area and this was compensated largely through increased pre
diction of clay loam (+3.4%) and silty sand (+3.5%) (Table S1). For 
moisture regime, the round 2 models diverged, with the Moderately Wet 
class being predicted more often for the IU and CI metric (+0.7% and 
2.7% respectively) but less often for the EU metric (− 3.0%) (Table S2). 
In terms of the spatial distribution, increases in silty sand can be seen in 
the central-west and southern portion of the study extent (Figs. 8–10). 
Increases in clay loam for the IU and CI treatment can be seen 
throughout the map (Fig. 8, 10). The map produced from the IU treat
ment (Fig. 8) reclassified some moisture regime values in the northeast 
and central-south Hearst from moderately fresh to moderately moist. 
The map produced from the EU treatment (Fig. 9) reclassified some 
textural class values in the northeast from organic to sand. The map 
produced from the CI treatment predicted more sand in the northeast 
and central west (Fig. 10) and reclassified patches of soil in the central 
portion of the Hearst to drier moisture regime classes. 

3.2. Study 2: How does sampling effort modulate the effect of 
incorporating uncertainty into sampling? 

3.2.1. Effects of uncertainty and sampling effort on model improvement 
As sampling effort increased, model performance improved (Fig. 11 

and 12). Table 3 shows the output of the multiple linear regression for 
each soil variable and model performance stat (i.e. accuracy and kappa). 
Linear regression closely fit the data with all R2 values ≥0.78 (Table 3). 
The number of soil points in the subsequent dataset (i.e., sampling 
effort) had a significant effect on model accuracy and kappa for both 
moisture regime and textural class (p < 0.0001; Fig. 11 and 12, Table 3). 
Across multiple sampling efforts, the high uncertainty treatments always 
failed to reach statistical significance at the p < 0.05 level. However, in 
some cases, the sample size × uncertainty interaction showed signifi
cance, indicating that as sampling effort increases, the benefits of adding 
data from areas of high uncertainty also increases. (See Fig. 11 and 12, 
Table 3) 

4. Discussion 

4.1. Study 1: Does additional sampling in areas of high uncertainty 
improve model performance? 

4.1.1. Comparing high uncertainty locations across metrics 
There was a fair bit of overlap between high uncertainty locations 

(where soil observations existed) across the uncertainty metrics. EU and 
CI had a large overlap of high uncertainty points, likely since EU and CI 
are calculated in a similar way, with CI defined as EI subtracted by the 
class with the second highest votes. IU and EU also shared a large 
amount of high uncertainty points. This is harder to explain but could 
happen if the predicted class had a “lead” in votes, but a low proportion 
of the overall vote and the rest of the votes were evenly split among the 
remaining class. In this scenario, IU and EU would represent this point as 
highly uncertain due to vote-splitting whereas CI would predict it as 
more certain since it only considers the vote difference between the 
predicted class and the “runner-up”. Follow-up studies could consider 
how uncertainty metrics relate to each other both theoretically and in 
the field, since these association were quite noticeable in our study. 

As expected, across all uncertainty metrics, locations where the 
dominant “moderately wet” and “organic” classes existed were rarely 
identified as high uncertainty. This pattern was more apparent for 
textural class than moisture regime likely because the textural class soil 
data was even more unbalanced than moisture regime (Figs. S2–S4). 
Importantly, these uncertainty scores were generated using the envi
ronmental covariates; they did not use the observed soil data in the 
validation dataset to calculate uncertainty. In other words, the model 
was not “deciding” these areas were low uncertainty because the soil 
classes present were common in the dataset, rather, the environmental 
feature space (along with the training soil observation) was used to 
determine these locations were low uncertainty. Classifying these loca
tions as low uncertainty likely occurred because the environmental 
feature space for the dominant soil class was better represented in the 
soil-environmental dataset leading to less uncertainty when predicting 
in areas where moderately wet/organic soil exists. Further, this suggests 
that the environmental covariates used in this study map onto real soil 
variation since there was lower uncertainty for covariate values corre
sponding to the dominant class. This link between uncertainty and 
environmental representation could be investigated in future studies by 
comparing the environmental feature space captured in the initial soil 
dataset (used to build the round 1 model) with the environmental co
variate values in the soil datapoints subsequently added. Dissimilarity 
indices (e.g., Bray and Curtis, 1957; Gower, 1971; Meyer and Pebesma, 
2021) could be used to quantify, for each soil class, how well repre
sented their corresponding environmental data is present in the initial 
soil dataset. 

Table 3 
Output of multiple linear regression for each soil variable and model performance statistic.  

Variable Model stat  Estimate Std. Error t stat p value R2 

Mositure Regime Accuracy (Intercept) 34.4582 0.26231 131.365 1.16E-222 0.83 
UncertaintyRANDOM − 0.56535 0.37096 − 1.524 0.12884278 
Data_pts_added 0.00794 0.00032 24.874 6.81E-68 
UncertaintyRANDOM:Data_pts_added − 0.00069 0.00045 − 1.5272 0.1280567 

Mositure Regime Kappa (Intercept) 0.17063 0.00342 49.8396 2.88E-127 0.84 
UncertaintyRANDOM − 0.00355 0.00484 − 0.7333 0.46408059 
Data_pts_added 0.00011 4.17E-06 25.9008 6.23E-71 
UncertaintyRANDOM:Data_pts_added − 1.22E-05 5.89E-06 − 2.0717 0.03937871 

Textural Class Accuracy (Intercept) 39.2849 0.28588 137.416 3.22E-227 0.79 
UncertaintyRANDOM − 0.50998 0.4043 − 1.2614 0.20841428 
Data_pts_added 0.00766 0.00035 22.0194 3.78E-59 
UncertaintyRANDOM:Data_pts_added − 0.00103 0.00049 − 2.0977 0.03699519 

Textural Class Kappa (Intercept) 0.19967 0.00424 47.1342 4.56E-122 0.80 
UncertaintyRANDOM 0.00246 0.00599 0.41068 0.68167858 
Data_pts_added 0.00012 5.16E-06 23.6909 2.54E-64 
UncertaintyRANDOM:Data_pts_added − 2.58E-05 7.29E-06 − 3.5424 0.00047774  
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Somewhat surprisingly, only the dominant class is underrepresented 
in the additional sample for the round 2 models (Figs. S2–S4). We ex
pected more of a tapering curve for the high uncertainty treatments 
along Figs. S2–S4 but instead many of the other common classes were as 
well represented or even more represented in the high uncertainty 
treatment compared to the control. This likely occurred because the vote 
distributions for these classes were split between the dominant class and 
the correct class. This can be seen in the confusion matrices (Figs. S5–S6) 
where clay loam, silt loam, and silty sand were often misclassified as 

organic. This was also true for moisture regime where very fresh, fresh, 
and moist were often misclassified as moderately wet. 

4.1.2. Model/map improvement and choice of uncertainty metric 
All uncertainty metric treatments showed model improvement over 

the control of random point addition. We did not perform statistical tests 
comparing our treatments since the raw increases in accuracy and kappa 
values were minimal and no striking differences were apparent. The 
round 2 treatment maps for textural class showed less of the dominant 

Fig. 12. Model kappa of as a function of subsequent sample size and whether additional data came from areas of high uncertainty or were sampled randomly for (A) 
moisture regime and (B) textural class. 
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class (organic) which was expected since this class was less common in 
the high uncertainty points. However, the round 2 treatments maps for 
moisture regime diverged in their dominant class (moderately wet) 
predictions with IU and CI predicting increases but EU predicting de
creases. This may be because EU had the lowest proportion of high 
uncertainty points as moderately wet compared to IU and CI (Figs. 7–9). 

4.2. Study 2: How does sampling effort modulate the effect of 
incorporating uncertainty into sampling? 

It was unclear a priori what the shape of the trend would be between 
sampling effort and model performance. In our study, we observed a 
strong linear trend although this trend may not be consistent across soil 
datasets or sampling efforts. For example, the initial round 1 model was 
built using 500 soil observations so increases of 300/600/900/1200 are 
quite substantial compared to the initial dataset size. If the original 
model was built using more data or if additional sampling was smaller 
relative to the original sample size, it is unclear if the model improve
ment trend would still be linear. The effects of building round 1 models 
on 500 data points can also be seen in model accuracy/kappa scores 
which are lower than ideal. Nevertheless, in our study, the linear trend 
was strong, and we did not observe any diminishing returns as sampling 
effort increased. 

The interaction between sampling effort and uncertainty treatment is 
important to note as it suggests the benefits of using high uncertainty 
maps to guide future sampling is more noticeable with intensive addi
tional sampling. This fortuitous since uncertainty analyses take time to 
complete so it may make sense to perform them if there is opportunity to 
do considerable additional sampling. 

4.2.1. Incorporating uncertainty maps into additional sampling for DSM 
Although uncertainty-guided sampling showed statistical improve

ment over random sampling, from a practical perspective, increases of 
1–2 percentage/kappa points are perhaps underwhelming. Note that the 
lack of performance improvement was not due to issues with the un
derlying soil dataset or modelling procedure the models being unable to 
improve with more data—the benchmarked models showed that adding 
the entirety of Dataset 1 + 2 led to much higher accuracy and kappa. 
Importantly, this paper compared the performance of multiple uncer
tainty metrics for uncertainty-guided sampling in the absence of other 
soil sampling restrictions such as spatial or environmental coverage. 
Given that we still observed model improvement using only uncertainty- 
guided sampling, it is likely model improvement will increase further if 
uncertainty-guided sampling is combined with other sampling consid
erations (Minasny and McBratney, 2006; Wadoux et al., 2019). For 
example, this uncertainty approach could be combined with conditioned 
Latin hypercube sampling (cLHS; Minasny and McBratney, 2006) – an 
approach that aims to capture environmental (and sometimes spatial) 
variability of the study area across the soil samples. Previous studies 
have combined cLHS with maps of terrain connectivity to optimize soil 
collection given that some areas are inaccessible (Clifford et al., 2014; 
Stumpf et al., 2016). Uncertainty maps could be incorporated into cLHS 
sampling by constraining the cLHS to only operate in areas above a 
certain uncertainty threshold value (Minasny and McBratney, 2006). 

For our study area and soil data, much of the uncertainty patterns 
seemed to be driven by the dominant soil class. In our case, reducing 
uncertainty was achieved through sampling in areas containing less of 
the dominant class. This uncertainty guided approach improved overall 
model performance which is a common goal of DSM projects. However, 
in some cases, practitioners may be more interested in discriminating 
between specific soil classes as opposed to overall model performance 
which reflects the models ability to discriminate between all soil classes. 
In this case, the soil dataset could be modified to only include the soil 
classes of interest, or the uncertainty equation could be modified to 
reflect vote distribution between the specific classes of interest. 

In this paper, we calculated uncertainty to guide independent 

sampling for moisture regime and textural class. Often, practitioners will 
measure multiple soil variables at a single sampling site. In this case, 
uncertainty maps for each variable could be averaged across soil prop
erties to guide future sampling in areas of high uncertainty for multiple 
soil properties (Vašát et al., 2010; Szatmári et al., 2019). 

5. Conclusions 

Digital soil mapping success depends on an understanding of the 
landscape and an ability to leverage good methodology to generate a soil 
map. An understanding of the landscape is needed to know what soils 
data are available and how to appropriately select environmental 
covariates for modelling. Good methodological practices include site 
selection for additional soil sampling, optimal sampling effort, and 
appropriate machine learning parameterization. While uncertainty 
maps are often used to gain an understanding of the landscape by 
providing spatially explicit estimates of soil map accuracy, we show in 
this paper they can also be used as methodological tools to improve 
future DSM performance. 

In this study, we were interested if uncertainty maps could be used to 
inform future soil sampling by performing additional sampling in high 
uncertainty as a strategy to increase model performance. By simulating a 
repeated soil sampling campaign, we demonstrate, as a proof of concept, 
that uncertainty analysis of a digital soil map can be used to guide future 
sampling since the updated soil maps showed a modest but statistically 
significant improvement in model accuracy and kappa scores. All un
certainty metrics tested in this study mapped onto real soil variation 
with highly uncertain areas unlikely to contain common soil classes in 
the soil pedon dataset. Furthermore, the benefits of using uncertainty 
maps to guide future sampling was consistent across multiple measures 
of uncertainty, was apparent for multiple degrees additional sampling 
effort and may be more significant as sampling effort increases. The 
approach outlined in this paper can incorporate legacy data into the 
initial DSM, incorporate initial soil sampling to guide future sampling in 
subsequent years (i.e., between field seasons), and can be performed 
multiple times for a single study area. 
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Wichmann, V., Böhner, J., 2015. System for automated geoscientific analysis (SAGA) 
v.2.1.4. Geosci Model Dev 8. https://doi.org/10.5194/gmd-8-1991-2015. 

Corporation, Microsoft, Weston, S., 2019. doParallel: Foreach Parallel Adaptor for the 
’parallel’ Package. R package version 1.0.15. https://CRAN.R-project.org/packag 
e=doParallel. 

Crins, W.J., Gray, P.A., Uhlig, P.W.C., Wester, M.C., 2009. The Ecosystems of Ontario, 
Part 1: Ecozones and Ecoregions. Marie, ON, Ontario Ministry of Natural Resources, 
Sault Ste.  

Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central 
and northern Canada. In: Ehlers, J., Gibbard, P.L. (Eds.), Developments in 
Quaternary Sciences, Volume 2, Part B. Elsevier, pp. 373–424. https://doi.org/ 
10.1016/S1571-0866(04)80209-4. 

Gallant, J.C., Dowling, T.I., 2003. A multiresolution index of valley bottom flatness for 
mapping depositional areas. Water Resource Res. 39 (12), 1347–1359. https://doi. 
org/10.1029/2002WR001426. 

Goodchild, M.F., Chin-Chang, L., Leung, Y., 1994. Visualizing fuzzy maps. In: 
Hearnshaw, H., M., Unwin, D.J. (Eds.), Visualization in Geographical Information 
Systems. John Wiley & Sons, NY, pp. 158–167. 

Gower, J.C., 1971. 1971 a general coefficient of similarity and some of its properties. 
Biometrics 27 (4), 857–871. https://doi.org/10.2307/2528823. 

Grinand, C., Arrouats, D., Laroche, B., Martin, M.P., 2008. Extrapolating regional soil 
landscapes from an existing soil map: sampling intensity, validation procedures, and 
integration of spatial context. Geoderma 143, 180–190. 

Hearst Forest Management, 2019. Hearst Forest Management Inc., Hearst Ontario. 
http://www.hearstforest.com/english/surficial.html (accessed 13 January 2020).  

Heung, B., Hodúl, M., Schmidt, M.G., 2017. Comparing the use of legacy soil pits and soil 
survey polygons as training data for mapping soil classes. Geoderma 290, 51–68. 
https://doi.org/10.1016/j.geoderma.2016.12.001. 

Hijmans, R., 2019. raster: Geographic Data Analysis and Modeling. R package version 
3.0-7. https://CRAN.R-project.org/package=raster. 

Huang, J., McBratney, A.B., Minasny, B., Malone, B., 2020. Evaluating an adaptive 
sampling algorithm to assist soil survey in New South Wales. Australia Geoderma 
Reg 21, e00284. https://doi.org/10.1016/j.geodrs.2020.e00284. 

Johnson, J.A., Uhlig, P., Wester, M., 2015. Field Guide to the Substrates of Ontario. 
Marie, Ontario, Ontario Ministry of Natural Resources, Sault Ste.  

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., 
Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., 
Scrucca, L., Tang, Yuan, Candan, C., Hunt, T., 2019. caret: classification and 
regression training. R package version 6.0-84. https://CRAN.R-project.org/p 
ackage=caret. 

Leung, Y., Goodchild, M.F., Lin, C.C., 1993. Visualization of fuzzy scenes and probability 
fields. In: Newton, H.J. (Ed.), Computing Science and Statistics, Volume 24: Graphics 

and Visualization. (Proceedings of the 24th Symposium on the Interface). Interface 
Foundation of N America, Fairfax Station, VA, pp. 416–422. 

Li, S., MacMillan, R.A., Lobb, D.A., McConkey, B.G., Moulin, A., Fraser, W.R., 2011. Lidar 
DEM error analyses and topographic depression identification in a hummocky 
landscape in the prairie region of Canada. Geomorphology 129, 263–275. https:// 
doi.org/10.1016/j.geomorph.2011.02.020. 

Mackasey, W.O., Blackburn, C.E., Trowell, N.F., 1974. A regional approach to the 
Wabigoon–Quetico belts and its bearing on exploration in Northwestern Ontario. 
Ontario Division of Mines, Ministry of Natural Resources, ON.  

Malone, B.P., de Gruijter, J.J., McBratney, A.B., Minasny, B., Brus, D., 2011. Using 
additional criteria for measuring the quality of predictions and their uncertainties in 
a digital soil mapping framework. Soil Sci Soc Am J 75, 1032–1043. https://doi.org/ 
10.2136/sssaj2010.0280. 

Marchant, B.P., Lark, R.M., 2006. Adaptive sampling and reconnaissance surveys for 
geostatistical mapping of the soil. Eur J Soil Sci 57, 831–845. https://doi.org/ 
10.1111/j.1365-2389.2005.00774.x. 

McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. 
Geoderma 117, 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4. 

Meyer, H., Pebesma, E., 2021. Predicting into unknown space? Estimating the area of 
applicability of spatial prediction models. Methods Ecol Evol 12, 1620–1633. 

Minasny, B., Bishop, T.F.A., 2008. Analyzing uncertainty. Chapter 24. In: McKenzie, N., 
Grundy, M., Webster, R., Ringrose-Voase, A. (Eds.), Guidelines for Surveying Soil 
and Land Resources. CSIRO Publishing, Melbourne, pp. 383–393. 

Minasny, B., McBratney, A.B., 2002. Uncertainty analysis for pedotransfer functions. Eur 
J Soil Sci 53, 417–429. 

Minasny, B., McBratney, A.B., 2006. A conditioned Latin hypercube method for sampling 
in the presence of ancillary information. Comput Geosci 32, 1378–1388. 

Minasny, B., McBratney, A.B., 2016. Digital soil mapping: a brief history and some 
lessons. Geoderma 264, 301–311. https://doi.org/10.1016/j. 
geoderma.2015.07.017. 

Musafer, G.N., Thompson, M.H., 2016. Optimal adaptive sequential spatial sampling of 
soil using pair-copulas. Geoderma 271, 124–133. https://doi.org/10.1016/j. 
geoderma.2016.02.018. 

Odgers, N.P., McBratney, A.B., Minasny, B., Sun, W., Clifford, D., 2014. DSMART: An 
algorithm to spatially disaggregate soil map units. In: Arrouays, D., McKenzie, N., 
Hempel, J., de Forges, A., McBratney, A.B. (Eds.), GlobalSoilMap: Basis of the Global 
Spatial Soil Information System. CRC Press, pp. 261–266. 

R Core Team, 2019. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.  

Riley, S.J., DeGloria, S.D., Elliot, R., 1999. A terrain ruggedness index that quantifies 
topographic heterogeneity. Intermountain J. Sci. 5, 23–27. 

Scull, P., Franklin, J., Chadwick, O.A., McArthur, D., 2003. Predictive soil mapping: a 
review. Prog Phys Geogr 27, 171–197. https://doi.org/10.1191/ 
0309133303pp366ra. 
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