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Digital soil mapping workflow for forest resource applications:
a case study in the Hearst Forest, Ontario
Christopher Blackford, Brandon Heung, Ken Baldwin, Robert L. Fleming, Paul W. Hazlett, Dave M. Morris,
Peter W.C. Uhlig, and Kara L. Webster

Abstract: Accurate soil information is critically important for forest management planning and operations but is challeng-
ing to map. Digital soil mapping (DSM) improves upon the limitations of conventional soil mapping by explicitly linking a
variety of environmental data layers to spatial soil point data sets to continuously predict soil variability across a landscape.
Thus far, much DSM research has focussed on the development of ultrafine-resolution soil maps within agricultural sys-
tems; however, increasing availability of light detection and ranging (LiDAR) data presents new opportunities to apply DSM
to support forest resource applications at multiple scales. This project describes a DSM workflow using LiDAR-derived eleva-
tion data and machine learning models (MLMs) to predict key forest soil attributes. A case study in the Hearst Forest in
northeastern Ontario, Canada, is used to illustrate the workflow. We applied multiple MLMs to the Hearst Forest to predict
soil moisture regime and textural class. Both qualitative and quantitative assessment pointed to the random forest MLM
producing the best maps (63% accuracy for moisture regime and 66% accuracy for textural class). Where error occurred,
soils were typically misclassified to neighbouring classes. This standardized, flexible workflow is a valuable tool for practi-
tioners that want to undertake DSM as part of forest resource management and planning.

Key words: digital soil mapping, machine learning, forest management.

Résumé : Des informations précises sur les sols sont absolument essentielles pour la planification et les opérations d’amé-
nagement forestier mais elles sont difficiles à cartographier. La cartographie numérique des sols (CNS) constitue un progrès
par rapport aux limites de la cartographie conventionnelle des sols en reliant une variété de couches de données environne-
mentales à des ensembles de données spatiales ponctuelles des sols pour prédire la variabilité à travers un paysage de façon
continue. Jusqu’à maintenant, beaucoup de travaux de recherche sur la CNS ont mis l’accent sur le développement de
cartes des sols à très haute résolution pour des systèmes agricoles. Cependant, la disponibilité croissante de données lidar
offre de nouvelles opportunités d’appliquer la CNS en support à des applications qui concernent les ressources forestières à de
multiples échelles. Ce projet décrit un flux de travail de CNS qui utilise des données altimétriques dérivées du lidar et des modèles
d’apprentissage automatique (MAA) pour prédire des attributs importants des sols. Une étude de cas dans la forêt de Hearst, dans le
nord-est de l’Ontario, au Canada, est utilisée pour illustrer le flux de travail. Nous avons appliqué plusieurs MAA à la forêt de Hearst
pour prédire le régime d’humidité et la classe de texture. Une évaluation tant qualitative que quantitative indiquait que le MAA de
forêt aléatoire produisait les meilleures cartes (précision de 63 % pour le régime d’humidité et de 66 % pour la classe de texture).
Lorsqu’il y avait des erreurs, les sols mal classés étaient typiquement placés dans les classes voisines. Ce flux de travail standardisé
et flexible est un outil précieux pour les praticiens qui veulent entreprendre la CNS en tant que composante de la planification et
de la gestion des ressources forestières. [Traduit par la Rédaction]

Mots-clés : cartographie numérique des sols, apprentissage automatique, aménagement forestier.

1. Introduction
Soils are a critical element of forest ecosystems in that soil min-

eralogy, nutrient supply, moisture retention, texture, structure,
and porosity collectively influence forest composition and pro-
ductivity (Leniham 1993; Drever and Lertzman 2001; Nigh 2006;
Nijland et al. 2015; Binkley and Fisher 2019). Within forested eco-
systems, soils also contribute to important ecosystem services
such as water filtration, nutrient cycling, and carbon seques-
tration (Adhikari and Hartemink 2016; Baveye et al. 2016).

Knowledge of the distribution of soil properties across for-
ested landscapes will improve our ability to practice sustain-
able forest management at multiple spatial scales (i.e., site,
stand, and landscape levels).
Conventional soil mapping approaches combine soil pedon

observations with expert interpretation of aerial orthophoto-
grammetry to generate a soil classification polygonmap based on
observable differences in landscape traits (e.g., slope position,
vegetation, and geomorphic features) (Scull et al. 2003). Although
conventional soil maps can be good sources of general soil
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knowledge, they have many drawbacks that limit their utility at
site- or stand-level forest management (McKenzie and Ryan 1999;
Terribile et al. 2011). First, accuracies of conventional soil maps
are not always reported or known. Second, soils and their proper-
ties are delineated into discrete areas (i.e., spatial polygons or
points) when, in reality, soil varies continuously across the
landscape, as influenced by the soil forming factors (i.e., cli-
mate, organisms, relief, parent material, and time) (Jenny
1941). Third, conventional soil maps developed for forested
systems are often created at small scales (e.g., 1:250 000),
which are too coarse to capture the short-range soil variability
needed for site-level management; in comparison, conven-
tional soil maps in agricultural systems are created at larger
map scales (e.g., 1:20 000 to 1:100 000). Fourth, the time and
associated costs required to develop soil maps using conven-
tional soil mapping approaches are high, leaving large areas
of Canadian forests unmapped.
To address the limitations of conventional soil mapping, soil

surveys are frequently being replaced by computationally driven,
digital approaches. Digital soil mapping (DSM) is an emerging
discipline that draws on the field of soil science, geographical in-
formation science (geographic information systems (GIS)), and
spatial statistics that aims to improve upon conventional soil
mapping approaches by providing high-resolution soil maps
matched to soil management scales for planning, implementa-
tion, and evaluation (McBratney et al. 2003; Scull et al. 2003;
Minasny and McBratney 2016). Although the discipline existed as
early as the 1970s (e.g., Webster and Burrough 1972a, 1972b),
advancements in computing, remote sensing, GIS, data mining,
and machine learning and the increasing availability of spatial
data sets have greatly facilitated the production of DSM products
since the 2000s (McBratney et al. 2003; Scull et al. 2003; Minasny
and McBratney 2016). Furthermore, technological advancements
have also allowed for digital soil maps to be produced at progres-
sively larger spatial extents and higher resolutions (Minasny and
McBratney 2016; Bulmer et al. 2019).
In DSM, statistical models are used to discover the relation-

ships between georeferenced soil observations (with known soil
properties and classes) and environment data (McKenzie and
Ryan 1999). These relationships are then used to make spatial soil
predictions for unsampled locations. Conceptual models linking
soils and the environment have long existed in the field of pedol-
ogy, with the most classic model being the CLORPT model of soil
formation (Jenny 1941). This model postulates that the develop-
ment and distribution of soil properties and classes across land-
scapes are a function of climate (CL), organisms (O), relief (R),
parent material (P), and time of soil development (T). McBratney
et al. (2003) updated Jenny’s model for application in DSM by
introducing the SCORPAN model, in which the soil properties at
a particular point in space are a function of other measured prop-
erties of the soil (S), climate (C), organisms (O), relief (R), parent
material (P), age of the soil (A), and the spatial location (N). DSM
spatially intersects georeferenced soil observations (response
variables) with spatial layers that represent the SCORPAN varia-
bles (predictor variables), and statistical models are used to infer
the empirical relationship between these predictor and response
variables. These relationships are then used to predict the spatial
distribution of a wide variety of soil properties, for example, soil
type (e.g., Heung et al. 2016, 2017), soil pH (e.g., Reuter et al. 2008),
and soil organic carbon (e.g., Minasny et al. 2013), on a pixel-by-
pixel basis (i.e., as a raster) across the landscape.
DSM is now a routinely used tool for precision agriculture

(K€uhn et al. 2009; Söderström et al. 2016), but applications in for-
estry are more limited. Although efforts to map forest soils have
been successful at local scales in Canadian landscapes (e.g.,

Webster et al. 2008; Akumu et al. 2015, 2019), attempts at apply-
ing DSM techniques at larger spatial extents in forestry (e.g., pro-
vincial and national scales) have had limited success (e.g.,
Mansuy et al. 2014). The challenges of mapping soil across large
forest extents are largely due to the limited availability of forest
soil pedon data (e.g., lack of historical data and challenges to soil
sampling in remote and difficult-to-access areas) and the large
amount of environmental variation, when compared with agri-
cultural landscapes. These challenges can be overcome but
require an understanding of the DSM process such that data col-
lection and analysis are performed in an efficient, standardized
way.
The techniques for developing digital soil maps are designed to

provide a consistent, objective, and quantitative approach to soil
prediction. Hence, the methodology of DSM usually follows a
generic structure, which includes acquisition of environmental
data layers that represent the SCORPAN factors, acquisition of
georeferenced soil observations, spatial intersection of soil obser-
vations with environmental layers, predictive modelling, and
assessments of model accuracy and uncertainties (see Fig. 1). As
spatial environmental databases, open plot data sources, and
computational power grow, DSMs will become more accessible
to practitioners and at increasingly finer resolutions (Minasny
and McBratney 2016). There are many different models and
inputs that a researcher can use in the DSM process, and these
decisions may result in very different outcomes. In other words,
each map is only a realization of the soil patterns, and validation
is therefore necessary to assess the accuracy of each map real-
ization. For example, Heung et al. (2016) performed a compre-
hensive comparison of machine learning techniques and
demonstrated that each learner produced visually distinct digi-
tal soil maps with varying levels of accuracy. Given the wide va-
riety of models and analytical decisions at the researcher or
forest practitioner’s discretion, it can be unclear what steps
need to be taken to generate the best model and map of the
desired soil attribute(s) and how to interpret model outputs.
In this paper, a standardized, semiautomated workflow for

DSM is presented for use in forest resource applications, with
an overall goal to provide tools that make DSM more accessi-
ble and interpretable to researchers and forest practitioners.
Important considerations related to data sources and availabil-
ity, types of models, and interpreting model outputs are dis-
cussed. The steps taken in this workflow and the benefits and
limitations of the approach are illustrated using a case study
from the Hearst Forest Management Unit (15 218 km2) in
northeastern Ontario, Canada, to map soil moisture regime
and soil textural classes.

2. Methods
Our general DSM workflow is structured to address some of the

major considerations when undertaking a DSM project in for-
ested systems:

1. defining the extent of the study area,
2. identifying the key soil properties to be predicted,
3. acquiring and harmonizing soil data for the study area,
4. modelling the relationship between the SCORPAN factors and

soil data,
5. evaluating and comparing the predictive models, and
6. assessing the accuracy and uncertainty of the spatial

predictions.

2.1. General digital soil mapping workflow
A workflow describing the recommended analytical steps for

undertaking DSM is illustrated in Fig. 1. Each step in the work-
flow can be automated using the R statistical software (R Core
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Team 2018) and its integration with SAGA GIS (Conrad et al.
2015), both of which are freely available online. We automated
this workflow for our Hearst Forest case study, and the code we
used to run our analyses is freely available online (Blackford

2020) and can be downloaded and modified to suit others’
needs. The main R packages used for this study included RSAGA
(Brenning et al. 2018), raster (Hijmans 2019), and caret (Kuhn
et al. 2019).

Fig. 1. Workflow for digital soil mapping (DSM).
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2.2. Study area
In all DSM projects, the study area should meet several criteria.

It should be located either where there are prior soil data avail-
able or where soil pedon descriptions and (or) sampling can be
performed, as the process relies on georeferenced soil pedon
descriptions. The study area should also be of relevant size for
forest resource management planning or implementation (e.g., a
forest management unit) and ideally should contain environ-
mental heterogeneity, representative of the larger landscape.
The better the study area reflects the natural environmental het-
erogeneity, the more likely the model will be transferable out-
side of the study area (Bui et al. 2007).
For this case study, we used the Hearst Forest, in northeastern

Ontario, Canada. The Hearst Forest is a managed forest, located
around the town of Hearst, Ontario (49°41 016.200N, 83°40 021.200W),
and has an area of approximately 15 218 km2 (Fig. 2). It was chosen
because of the availability of a high-resolution digital elevation
model (DEM) derived from light detection and ranging (LiDAR),
provided by Hearst Forest Management Inc., and the availability
of a large soil pedon data set (7893 spatial points).
The study area is located on Precambrian Shield, is of moderate

relief, and is covered by Quaternary age sediments (Blackburn
et al. 1985; Mackasey et al. 1974; Thurston 1991). The northern and
central areas of the forest are characterized by an extensive clay
plain, known as the Clay Belt, deposited during inundation by
proglacial Lake Barlow–Ojibway about 9000 years ago (Dyke
2004); however in other areas of the forest, loamy and sandy soils
can be found (Hearst Forest Management 2019). Many soils in
the Hearst Forest are poorly drained, and organic soil is com-
mon throughout (Hearst Forest Management 2019). Esker com-
plexes from previous glaciation can be found in the centre of
the forest.
The Hearst Forest is representative of the 3E Boreal Shield eco-

region within Ontario (Crins et al. 2009) and is actively managed
by Hearst Forest Management Inc. Small changes in topography
can have large implications for soil composition and the ability
of machinery to operate. The study area is dominated by black
spruce (Picea mariana (Mill.) B.S.P.) in the low-lying areas and by
trembling aspen (Populus tremuloides Michx.) in the well-drained
upland areas. Other common lowland species include eastern
white cedar (Thuja occidentalis L.) and tamarack (Larix laricina (Du
Roi) K. Koch). Balsam fir (Abies balsamea (L.) Mill.), white spruce
(Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.)
are other common species found on the upland sites. Balsam pop-
lar (Populus balsamifera L.) and white birch (Betula papyrifera Mar-
shall) are some of the associated deciduous tree species found in
the study area (in addition to Populus tremuloides previously
mentioned).

2.3. Soil response data
In DSM, the soil properties to be predicted should be relevant

to forest management objectives and research goals. Important
properties incorporated in previous DSM efforts have included
soil texture, soil moisture, nutrients, pH, and soil carbon, as well
as more general taxonomic attributes like soil great group or soil
class (e.g., Minasny et al. 2006; Reuter et al. 2008; Mansuy et al.
2014; Heung et al. 2017). Acquisition of spatially referenced soil
point data may come from existing soil pedon data sets, or may
be polygon-based data, which can be acquired from conventional
soil maps. Methods are available to transform polygon-based
data sets to spatial point data sets for use in DSM (Yang et al. 2011;
Odgers et al. 2014; Heung et al. 2017). If there is a lack of soil data,
additional sampling should be distributed across the study area
and designed in a way that captures the inherent environmental
variability (e.g., Minasny andMcBratney 2006).
For the Hearst Forest case study, a combination of previously

gathered federal, provincial, and targeted soil sampling was used
to predict moisture regime and textural class (Table 1) (Johnson

et al. 2015). Moisture regime was partitioned into xeric, dry,
fresh, moist, wet, and inundated classes. Soil textural classes
were determined from the “effective texture” found at a site (i.e.,
the dominant soil texture of the pedon). The textural classes
were classified either as organic or, if a mineral soil was present,
by the relative proportions of sand, silt, and clay. Federal soil
data came from Canada’s National Forest Inventory (NFI); provin-
cial soil data were obtained from Ontario’s Growth and Yield
(G&Y) Program, as well as Forest Resource Inventory (FRI) and
provincial Forest Ecosystem Classification (FEC) plots. The Hearst
Forest also had targeted soil pedon data from the Advanced For-
est Resource Inventory Technologies (AFRIT) project. In total,
there were 7893 soil data points within the Hearst Forest (Fig. 3).
Of these, 7734 had moisture regime determinations, and 7213
recorded textural class information. The Hearst Forest is a unique
forest management unit where rich plot data were available,
whereas other management units in Ontario would not have the
same density of soil pedon data.

2.4. Predictor data (environmental covariates)
When selecting the appropriate environmental predictor

layers to represent the SCORPAN factors, the extent of the study
area needs to be taken into consideration. For study areas with a
small extent, soil variability is often controlled by short-range
variability in relief, hydrology, and vegetation, while climate is
often assumed to be constant. Over larger spatial extents, climate
becomes an increasingly important driver of soil variability.
These layers can be achieved from targeted environmental data
collection (e.g., through aerial LiDAR), but if this is not feasible,
in many areas of the world, elevation data are freely available
(e.g., Yamazaki et al. 2017, 2019), as well as hydrology and vegeta-
tion layers (Didan 2015).
For the Hearst Forest case study, we used a LiDAR DEM to derive

topographic metrics, a river and lake layer to represent hydrol-
ogy, a bedrock and Quaternary geology layer, and three forest

Fig. 2. Hearst Forest with respect to Ontario, Canada. Map was gener-
ated using ArcGIS software (Esri, Redlands, Calif., USA). [Colour
online.]
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survey layers to describe forest composition that, collectively,
represent the soil forming factors.
Calculations were performed on the DEM and river and lake

layers to generate a suite of metrics describing the elevational
change and hydrology of the study area. The DEMhad a 10m� 10m
resolution and was “smoothed” by passing a 201 cell � 201 cell
moving window filter across the extent, which averaged the eleva-
tion values within the window. In DSM, a smoothing process is of-
ten applied to reduce the effects of spatially uncorrelated noise
from LiDAR-derived DEMs and to remove their anomalous pits
and peaks (Li et al. 2011). Furthermore, smoothing helps to incor-
porate the topographic variability expressed at larger scales
(Behrens et al. 2010). Determining the best approach to DEM
smoothing is an interactive process and will be unique to each
project as a function of the resolution and quality of the DEM
available for each study area. For example, high-resolution LiDAR
DEMswill accentuatemicrotopographic features (e.g., hummocks
and hollows) that are less important to soil formation than meso-
topographic features (e.g., surface curvature, slope position, and
slope length), thereby requiring more smoothing than DEMs with
coarser resolution. Conversely, coarse-resolution DEMs cannot
capture heterogeneity at a finer scale.
We derived several topographic metrics from the smoothed

DEM to characterize local-scale morphometry (e.g., slope, aspect,
and curvature), landscape-scale morphometry (e.g., multiscale
topographic position index), and hydrology (catchment area,
catchment slope, modified catchment area, and topographic
wetness index), all of which were derived in the SAGA program
(Conrad et al. 2015) and run using R (R Core Team 2018). The DEM
was “hydrologically conditioned” prior to calculating the topo-
graphic metrics representing hydrology. We used a river and
waterbody layer as a mask and subtracted a fixed elevation of
30 m wherever this feature occurred on our DEM. Hydrologically
conditioning the DEM in this way, prior to calculating topographic
metrics, is important because it helps ensure that the hydrologi-
cal flow routing algorithms used to calculate hydrological deriva-
tives follow an expected path throughout the landscape towards
known hydrological features. The river and lake layers were also
used to derive distance to river and lakemetrics to represent land-
scape-scale relief patterns.
The geology layers were rasterized from a polygon layer repre-

senting the sedimentation and bedrock of the region. The for-
estry layers represented the overstory height, understory height,
and the overstory and understory leading species (i.e., most com-
mon species) and were rasterized from a polygon layer from the
provincial FRI. Finally, we calculated Euclidean distance fields for
our study area, corresponding to the distance from the x axis, y
axis, northeastern extent, southeastern extent, northwestern
extent, southwestern extent, and centre of our study extent. Eu-
clidean distance fields are used to incorporate spatial position
(i.e., the “N” in SCORPAN) into soil predictions (near points in
space more likely to be similar than distant points). The full list
of environmental covariates used in our DSM case study can be
found in Table 2.

2.5. Machine learning for digital soil mapping
Machine learning is the (semi)automated process of discover-

ing the complex relationships between predictor and response
variables using computer-based approaches (Witten et al. 2005;
Hastie et al. 2009). Machine learning models (MLMs) are often
preferred in DSM over other statistical models (e.g., generalized
linear models) because they have shown success at modelling the
complex relationships between the predictor and response varia-
bles and require fewer assumptions on the form of the relation-
ships between predictor and response variables. Depending on
the specific machine learner, some learners are able to account
for linear and nonlinear relationships, integrate discrete and
continuous variables, handle nonparametric data, and be used in
regression analysis or for classification purposes. Specific to clas-
sification purposes in DSM, Heung et al. (2016) provided a com-
prehensive overview of the most commonly used machine
learning techniques such as tree-based learners, distance-based
learners, artificial neural networks, model trees, and support
vector machines. Furthermore, they provided a comparison
amongst 10 learners and showed that different learners would
result in quite different outputs when using the same input data.
Differences in the maps and the accuracy among learners have
also been observed in other model comparison studies, and the
success of each learner varies across different landscapes (e.g.,
Taghizadeh-Mehrjardi et al. 2015; Brungard et al. 2015; Heung
et al. 2017). Overall, it is unclear a priori which machine learner
will yield the best soil model and map for a given study area and
input variables. Hence, it can be useful to perform model

Table 1. Data sources for the Hearst Forest case study area.

Data source Soil information

Forest Resource Inventory (FRI) data sets Texture, horizons, depth, mottle depth, moisture class, landform
National Forest Inventory (NFI) plots Texture, horizons, depth, moisture class, landform, chemistry, bulk density
Provincial Growth and Yield (G&Y) plots Texture, horizons, depth, depth to gley, moisture class, landform
Forest EcosystemClassification (FEC) or
Ecological Land Classification (ELC) plots

Texture, horizons, depth, depth to gley, moisture regime, landform,
topographic position, soil chemistry (some)

Independent research programs
� Advanced Forest Resource Inventory

Technologies (AFRIT)

Texture, horizons, depth, depth to gley, moisture class

Fig. 3. The Hearst Forest study area and soil attribute points. Map
was generated using ArcGIS software.
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comparisons as part of best practices (Heung et al. 2017). Model
comparison is one important part of model evaluation, which we
address later.

2.6. Machine learningmodel training and prediction
MLMs require the user to partition their data set into training

and testing data sets, often referred to as “folds”. MLMs use algo-
rithms to develop a model relating predictor and response varia-
bles on the training fold. It then evaluates how well the model
performs by quantifying its accuracy to predict the testing fold

response data using the testing fold predictor data. There are dif-
ferent ways data partitioning can be achieved (Hastie et al. 2009),
and a discussion on data partitioning approaches is beyond the
scope of this paper. For our case study, k-fold cross-validation was
used, as it is one of the most popular approaches to data parti-
tioning. In k-fold cross-validation, the data set is split into k num-
ber of folds, where k – 1 folds are used to train the model and the
remaining fold is used to validate the model. This process is reit-
erated k times with each iteration using a different validation
fold (Fig. 4). This approach is preferred over a simple onetime

Table 2. Environmental covariates used in digital soil mapping (DSM) for the Hearst Forest.

Covariate Representation Data source

Aspect Local relief DEM
Downslope curvature Local relief DEM
General curvature Local relief DEM
Local curvature Local relief DEM
Local downslope curvature Local relief DEM
Local upslope curvature Local relief DEM
Maximum curvature Local relief DEM
Midslope position Local relief DEM
Minimum curvature Local relief DEM
Normalized height Local relief DEM
Plan curvature Local relief DEM
Profile curvature Local relief DEM
Real surface area Local relief DEM
Slope Local relief DEM
Standardized height Local relief DEM
Tangential curvature Local relief DEM
Terrain ruggedness index (Riley et al. 1999) Local relief DEM
Terrain surface concavity Local relief DEM
Terrain surface convexity Local relief DEM
Topographic negative openness Local relief DEM
Topographic positive openness Local relief DEM
Total curvature Local relief DEM
Upslope curvature Local relief DEM
Upslope height Local relief DEM
Multiresolution index of ridge top flatness
(Gallant and Dowling 2003)

Landscape relief DEM

Multiresolution index of valley bottom
flatness (Gallant and Dowling 2003)

Landscape relief DEM

Multiscale topographic position index Landscape relief DEM
Valley depth Landscape relief DEM
Stream distance Landscape relief River and lake geodatabase (https://data.ontario.ca/

dataset/ontario-integrated-hydrology-data)
Waterbody distance Landscape relief River and lake geodatabase (https://data.ontario.ca/

dataset/ontario-hydro-network-waterbody)
Catchment area Hydrology DEM
Catchment slope Hydrology DEM
Modified catchment area Hydrology DEM
Topographic wetness index Hydrology DEM
Bedrock geology Parent material Geology shapefile (https://data.ontario.ca/dataset/

1250-000-scale-bedrock-geology-of-ontario)
Quaternary geology Parent material Geology shapefile (https://data.ontario.ca/dataset/

quaternary-geology-of-ontario)
Overstory height Organisms Forestry inventory shapefile
Overstory leading species Organisms Forestry inventory shapefile
Understory height Organisms Forestry inventory shapefile
Understory leading species Organisms Forestry inventory shapefile
Distance from x axis Spatial position NA
Distance from y axis Spatial position NA
Distance from northeastern extent point Spatial position NA
Distance from southeastern extent point Spatial position NA
Distance from northwestern extent point Spatial position NA
Distance from southwestern extent point Spatial position NA
Distance from centre of extent Spatial position NA

Note: DEM, digital elevation model; NA, not applicable.
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Fig. 4. k-fold cross-validation procedure.
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split (i.e., random holdback cross-validation) of the data set into
training and testing folds because k-fold cross-validation enables
the entire data set to be used in model training and validation.
Furthermore, it provides a more robust measure of model accu-
racy through themultiple iterations of validation.
For our Hearst Forest case study, we partitioned our data using

10-fold cross-validation and compared results from three differ-
ent commonly used MLMs (Hastie et al. 2009): k-nearest neigh-
bour (k-NN) (Altman 1992), support vector machine (SVM) with a
radial kernel (Cortes and Vapnik 1995), and random forest (RF)
(Ho 1998; Breiman 2001).

2.7. Machine learningmodelmaps andmodel evaluation
The key output from the modelling procedure is the soil

property map produced from the MLM (i.e., soil property as
a function of the soil forming factors). The evaluation of the
digital soil maps produced from different MLMs should use
both qualitative (i.e., visual analysis) and quantitative (e.g., model
performance statistics and uncertainty estimates) approaches.

2.7.1. Qualitative assessment of the digital soil map
Qualitative evaluation of digital soil maps at both coarse and

fine scales is important to ensure that they align with our pedo-

Fig. 5. Predicted moisture regime and textural class values for the (A) random forest (RF), (B) k-nearest neighbour (k-NN), and (C) support
vector machine (SVM) models. Maps were generated using ArcGIS software. [Colour online.]
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logical knowledge of how soils vary across space. For example, heu-
ristics of spatial autocorrelation (i.e., clustering of pixels with the
same soil property) or classic soil–environment relationships (e.g.,
wetlands in areas of low elevation and coarser material on hill-
slopes) can be used to ensure that the soil maps produced are rea-
sonable. Finally, comparing among soil maps generated from
different MLMs enables a better understanding of soil map uncer-
tainty. For example, where various models converge on the same
prediction, it infers a higher confidence in that prediction.

2.7.2. Quantitative assessment of model performance
Overall accuracy and Cohen’s kappa (Cohen 1960) are two use-

ful metrics for evaluating MLM performance. Overall accuracy
represents the probability that a model will correctly predict the

soil attribute value from the environmental data (the percentage
of correct classifications). Kappa incorporates accuracy but also
accounts for by-chance agreements and is defined by

ð1Þ k ¼ po � pe
1� pe

where po is defined as model accuracy and pe is defined as the
probability of a chance agreement (i.e., if class assignment was
determined by assigning classes based on their relative abun-
dance). Although overall accuracy is an intuitive way to measure
model performance, kappa is often a more useful statistic, as it is
possible to have a highly accurate model that is not very informa-
tive (e.g., when mapping a soil attribute with few classes or when

Fig. 5 (continued).
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there is an imbalanced data set with most of the data points
belonging to a single class).
Although overall accuracy and kappa statistics provide a repre-

sentation of overall model performance, it is possible to further
examine the model to determine what soil classes the model is
performing well or poorly on using a confusion matrix. The con-
fusion matrix shows how often each observed class is correctly
predicted and where misclassifications occur. In a square matrix,
the predicted classes are represented as rows and the observed
classes are represented as columns. The cells are filled with the
percentage of the data set that fit that criteria. A perfect model

would never misclassify, and thus only the diagonal rows would
have cells filled in. Confusion matrices allow for visual analysis
of where misclassifications occur and provide the opportunity to
perform sensitivity and specificity analyses. Similar analyses can
be performed if the soil property is a continuous variable instead
of categorical. In this case, instead of a matrix, a plot of observed
versus predicted values could be generated to showwhere predic-
tions deviate most from observations (on the 1:1 line) (Supple-
mentary Fig. S11) and the accuracy may be quantitatively
determined using Lin’s concordance correlation (Lin 1989).

Fig. 5 (concluded).

1Supplementary data are available with the article at https://doi.org/10.1139/cjfr-2020-0066.
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2.8. Assessment ofmap uncertainty
One of the largest benefits of using DSM over conventional soil

mapping is that DSM can provide the user with estimates of
prediction uncertainty. The confusion matrix represents uncer-
tainty of the model across the data set of soil attributes and

environmental covariates, but uncertainty across space (i.e., at
specific pixels) can also be evaluated. For example, in the RF
model, classification is determined through the “votes” of many
individual decision trees. The final classification decision is deter-
mined by a majority vote of all the decision trees generated by the RF

Fig. 6. Predicted moisture regime and textural class from the (A) RF, (B) k-NN, and (C) SVM models in a subarea of the Hearst Forest. Maps
were generated using ArcGIS software. [Colour online.]
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model — the class with the most votes is chosen as the predicted
class. By quantifying the vote distribution across the trees that
make up the random forest, one can get a measure of how “confi-
dent” the RF model is in its prediction. In other words, if the vot-
ing decision made by the RF model has a narrow distribution of
votes across classes, there is a higher expectation that the classifi-
cation is correct than if the votes are split acrossmany classes.
For each pixel (x), uncertainty can be quantified using the en-

tropy metric, which quantifies the distribution of votes across
classes (Zhu 1997):

ð2Þ HðXÞ ¼ 1
lnðnÞ

Xn

i¼1

PiðxÞ � ln½PiðxÞ�

where n is the number of classes of the soil attribute being pre-
dicted and Pi(x) is the proportion of votes that each class was
given from the RF model. When all votes are given to a single
class, H(X) = 0, which is the smallest entropy (uncertainty) possi-
ble. When all votes are split equally across classes, H(X) = 1, which
is the highest entropy possible. Such an approachmay be applied
to other learners as well (e.g., k-NN and SVM) by generatingmulti-
ple iterations of a DSM using bootstrap samples of the training
data to generatemultiple uniquemodels (Heung et al. 2017). Iden-
tifying the locations of the digital soil map that have low to high
entropy allows one to proceed with caution or confidence when
using the map for practical purposes. Prediction uncertainty can
also be calculated formaps of continuous soil properties. For exam-
ple, the variance of predicted soil values can be quantified between
the trees within the random forest and used as a metric of uncer-
tainty (Stumpf et al. 2017). Modified modelling approaches such as
quantile regression forest can also provide measures of prediction
uncertainty for continuous soil properties (Meinshausen 2006;
Vaysse and Lagacherie 2017).

3. Results and discussion

3.1. Qualitative assessment of Hearst Forest digital soil map
There were noticeable differences in the digital soil maps pro-

duced by differentMLMs for the Hearst Forest (Fig. 5). For textural
class, all MLMs predicted a substantial amount of organic soil
throughout the forest, as well as sandy areas in the central (esker
complex) and western (outwash plain) parts of the study area. For
moisture regime, all MLMs predicted a substantial amount of the
moderately wet moisture regime class, as well as a distinctive lin-
ear pattern of dry soil in the central part of the Hearst Forest. The
abundance of wet soil classes agrees with previous description
and analyses in the region (Akumu et al. 2015; Hearst Forest
Management 2019). The greatest visual difference among the
maps was the variability in soil textural classes across space. The
k-NN and SVM maps predicted rapid soil class change with small
changes in spatial location (i.e., pixelated), whereas the RF model
predicted that soil class was more conserved with small changes
in spatial location (i.e., clustering) (Fig. 5). To highlight the soil
variation depicted by the different models at a finer scale, we
examined a smaller area of the Hearst Forest (Figs. 6A–6C). Com-
paring the smaller areas of the different models yielded similar
results, where moderately wet and organic textural classes were
dominantly predicted by all models. Across all maps, higher ele-
vation areas were associated with loamy soil— often sandy loam
and clay loam; however, silt loam was more common in areas of
lower elevation, especially near waterbodies. The moisture re-
gime and textural class maps covary with each other, which is to
be expected because soil texture is one component that is consid-
ered when determining moisture regime in the field (Johnson
et al. 2015).
Overall, the RF model produced a more heuristically reasona-

ble map of the Hearst Forest. In particular, there was a greater
degree of spatial clustering in soil class values for the RF soil

map than for those of the other models, which corroborates an
intuitive understanding of how soil textural class and moisture
regime vary across space. Additionally, moisture regime and
texture class vary as would be expected across elevational
gradients.

3.2. Quantitative assessment of Hearst Forest model
performance
For the Hearst Forest case study, we found that different MLMs

yielded different accuracy and kappa scores (Table 3). The RF
model performed best for both moisture regime (overall accuracy =
63%, kappa = 0.55) and textural class (overall accuracy = 66%, kappa =
0.58). Given that RF was the best performing model (i.e., highest
accuracy and kappa), we discuss its confusion matrix results (Fig. 7)
in this section. Confusionmatrices for the k-NN and SVMmodels are
presented in Supplementary Figs. S2 and S3, respectively.1

For moisture regime, many classes were often incorrectly
classified as themoderately wet class (Fig. 7A). Based on the sensi-
tivity and specificity scores (Supplementary Table S11), it is appa-
rent that the model was effective at identifying true positives for
the moderately wet class (sensitivity = 0.899) when compared
with other classes but slightly worse at excluding false positives
(specificity = 0.805). With the exception of this overprediction of
moderately wet soil, as the distance between moisture regime
classes increased, the likelihood of misclassification decreased
(e.g., less likely to misclassify moderately fresh soil as very moist
than as fresh; Fig. 7A). This decrease in misclassification is
encouraging, as it suggests that the misclassifications generated
by this model are less “costly” (i.e., one category “off”) than ran-
dommisclassification.
For textural class, the organic class was overpredicted (Fig. 7B).

It was more challenging to arrange the confusion matrix axes
such that nearby classes were more similar than distant classes,
as texture is represented by a combination of three particle sizes
and also included the organic class. To account for the similarity
in classes when validating DSMs, Rossiter et al. (2017) suggested
that the calculation of taxonomic distances (Minasny andMcBratney
2007) may be used for assessing the accuracy of categorical DSMs.
Nevertheless, similar textural classes were misclassified more of-
ten than dissimilar textural classes (e.g., silty clay was more often
misclassified as silty clay loam or clay loam). Similar to moisture
regime, the sensitivity and specificity scores for textural class
(Supplementary Table S21) show that the model was more effec-
tive at identifying true positives for the organic class than other
classes (sensitivity = 0.919) but slightly worse at excluding false
positives (specificity = 0.794).
These confusion matrices show that the RF model is accurate

(i.e., 63% overall accuracy for moisture regime and 66% overall ac-
curacy for texture class), and when misclassification occurs,
there is a high probability that the misclassification is close to
correct (e.g., assigned to the next class).
It is likely that overprediction of classes for both soil attributes

was due to an imbalanced soil class data set. There were many

Table 3. Model performance metrics for the machine learning models
(MLMs).

Model Soil variable Accuracy Kappa

Random forest Moisture regime 0.63 0.55
Random forest Textural class 0.66 0.58
k-nearest neighbour Moisture regime 0.61 0.53
k-nearest neighbour Textural class 0.61 0.53
Support vector machine
(radial kernel)

Moisture regime 0.59 0.51

Support vector machine
(radial kernel)

Textural class 0.60 0.51
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Fig. 7. Confusion matrices from the RF model for (A) moisture regime and (B) textural class.
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Fig. 8. Histograms of soil attribute values for (A) moisture regime and (B) textural class.
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observations of the moderately wet and organic textural class in
our soil attribute data set compared with other classes (Fig. 8).
Imbalanced data sets tend to lead to overprediction of the most
common class (Heung et al. 2014, 2016). There are approaches to
“balancing” these imbalanced data sets prior to DSM (Hounkpatin
et al. 2017; Sharififar et al. 2019); however, in natural systems, there
is often not an even split across soil classes, and altering the class
breakdown of the soil data set could actually decrease overall model
accuracy. For example, if a low-elevation area is beingmapped, there
may be many organic observations, as is the case for the Hearst For-
est, because that reflects the true soil conditions across the mapped
area. In our case, an adjustment of the soil attribute data set could
help limit overprediction of the organic class andwould likely lower
overall model accuracy by not recognizing true positives (i.e., type II
error). With all this considered, using a standardized approach to
soil sampling, as emphasized by Minasny and McBratney (2006),
should help mitigate model bias without any post hoc manipula-
tion of the soil attribute data set. Any decision to adjust the soil at-
tribute data set needs to consider the overall goal of the DSM
project. Generating a soil map that provides the best overall

accuracy of soil attributes for a mapped area or region may
require a different approach than generating a soil map that
increases accuracy in specific areas or for specific classes (Heung
et al. 2016). The issue of class imbalance is not frequently
addressed in the DSM literature (Heung et al. 2014, 2016), although
Taghizadeh-Mehrjardi et al. (2020) recently performed a compre-
hensive comparison of class balancing techniques applied to
MLMs. The study demonstrated that different combinations of
MLMs and balancing techniques could lead to significant improve-
ments in the prediction accuracy of DSMs.

3.3. Assessment of Hearst Forest soil map uncertainty
There was large variation of entropy values throughout the

Hearst Forest for both moisture regime and textural class (Fig. 9).
Similar to the qualitative assessment of the digital soil maps, we
examined a subarea to better characterize uncertainty through
space (Fig. 10). For the subarea, areas of low entropy (i.e., low
uncertainty) were found in locations classified as moderately wet or
those in the organic textural class. The RF model exhibited high
uncertainty when predicting soil properties for high-elevation areas

Fig. 9. Entropy maps generated from the RF model for (A) moisture regime and (B) textural class. Maps were generated using ArcGIS software.
[Colour online.]

Blackford et al. 73

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

U
ni

ve
rs

ity
 o

f 
T

or
on

to
 o

n 
01

/1
0/

21
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



adjacent to waterbodies. This was expected, as the soil data set had
fewer records for these drier, coarse-textured (sandy) classes.

3.4. General discussion
Applying the DSM approach to the Hearst Forest resulted in

reasonable soil maps for soil moisture regime and textural class
and allowed us to qualitatively and quantitatively address the uncer-
tainty in our predictions. The confusion matrices, soil map, and en-
tropy raster all suggested an overprediction of the moderately wet
moisture regime class and organic textural class. Misclassifications
weremost likely to occur between similar classes— an encouraging
result, as it not only suggests that our model is making reasonable
inferences, but also, in practice, these errors would be less costly.
Understanding the strengths and weaknesses of these derived maps
is an important consideration when using these map products to
address forest resource management and policy objectives. For
example, soil texture and moisture regime maps are useful to iden-
tify areas sensitive to drought or, more importantly in the Hearst
Forest, areas sensitive to paludification (Mansuy et al. 2018). These
maps represent important intermediate steps in delineating soil

nutrient regimes and stand productivity maps, as well as predicting
forest ecosites (Banton 2010).

3.4.1. Benefits and limitations of digital soil mapping
DSM presents an opportunity to incorporate baseline soil infor-

mation into forestry resource applications by providing a stand-
ardized, data-driven approach to describe and map soil variation
through space. The development of high-resolution soil maps,
with their associated uncertainty, can be used in many forestry
applications while recognizing its limitations.
Although MLMs have shown promising results in predicting

soil attributes from environmental data, the relationships
derived by these models are often complex and difficult to inter-
pret. As a result, the MLMs do not necessarily improve our con-
ceptual understanding of these soil–environment relationships.
One approach to better understand how these environmental
conditions influence soil development would be through a post
hoc variable importance analysis. Variable importance analysis
(e.g., Goetz et al. 2015) quantifies the impact that each predictor
variable had in predicting each response variable. Although this

Fig. 10. Entropy maps of the Hearst Forest subarea for (A) moisture regime and (B) textural class. Maps were generated using ArcGIS software.
[Colour online.]
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analysis would increase our understanding of which environ-
mental variables are important to include in DSM, there remains
uncertainty surrounding how each covariate is influencing the
specific soil value.
MLMs require relatively few assumptions surrounding the

form of the relationship between predictor and response varia-
bles; however, the trade-off for this flexibility is that MLMs
require more data for model training (i.e., model fitting) than
conventional models that make assumptions about the relation-
ship between predictor and response variables. The data set size
needed to generate an informative DSM will depend upon soil and
environmental variability, as well as the threshold of model per-
formance that is acceptable. Methods such as the conditioned Latin
hypercube can help determine adequate sample size (Minasny and
McBratney 2006), and other approaches can transform polygon-
based data sets to spatial point data sets for use in DSM (Yang et al.
2011; Odgers et al. 2014; Heung et al. 2017). Finally, certainMLMs are
better than others at dealing with small data sets (Khaledian and
Miller 2020). Aswith anymodel, if the input data are of poor quality
or incorrectly geocoded, it can substantially degrade the resulting
map accuracy. If a large geographic area is being mapped and the
soil data were collected over multiple years, it needs to be inter-
preted in a consistentmanner.

4. Conclusions
The key outcome of this study is a baseline strategy for DSM

that can be used consistently by practitioners. We present a
workflow and scripting (Blackford 2020) to conduct amultimodel
approach to mapping categorical soil properties and evaluate
their accuracy. Application of the approach and tools developed
in this project should allow for more accurate mapping of soil
properties to support forest resource applications, including for-
est management planning, operations, and evaluations (e.g.,
guideline effects and effectiveness monitoring).
Base data layers used as covariates for the Hearst Forest case

study were obtained from an open-source provincial repository
(e.g., Land Information Ontario) and other existing data (e.g.,
FRI). Model calibration data were provided through the provin-
cial forest inventory, FEC, G&Y, and NFI ground plot networks, as
well as project-specific data collections (e.g., AFRIT). The avail-
ability of calibration data collected in a systematic and consist-
ent way is key to accurate digital soil maps. Soil collections, done
as independent collections, are very costly to do; thus, we recom-
mend that opportunistic collections of soil continue be done
whenever and wherever other types of forest mensurational
studies are carried out. As a minimum, basic measurements
such as organic layer thickness, forest humus form, mineral soil
texture, and other easily measured attributes (e.g., pedon depth,
depth to prominent mottles or gley, depth to carbonates, mois-
ture regime, and drainage class) should be made. If trained
soil scientists are unavailable to make these measurements, col-
lection of soils for subsequent chemical analyses would be
extremely valuable to better address other forest management
and policy objectives such as improved forest growth models
and carbon accounting. The collection and processing of soil
samples remains problematic, as additional resources for field
equipment, personnel training, and postprocessing and lab anal-
ysis are required. Furthermore, there is currently no centralized
repository to archive collected soil samples.
To maximize the value of any new and existing soil data col-

lected, there needs to be curation through a soil database portal.
One group working towards this curation at a national scale is the
Canadian Digital Soil Mapping Working Group (CDSMWG). The
CDSMWG is a forum for DSM experts and practitioners to collabo-
rate and share best practices. The network was established by the
Pedology Committee of the Canadian Society of Soil Science in 2016
and includes experts from university, federal, and provincial

government agencies. The CDSMWG has facilitated the centraliza-
tion of DSM expertise in Canada and strives to minimize research
duplication andmissed opportunities. The CDSMWGweb page (Ca-
nadian Society of Soil Science 2020) is a good starting place for
advancing one’s knowledge about soils in general and DSM. The
vision of the CDSMWG is to provide opportunities for collaboration
and a portal to key soil data repositories.
To summarize, DSM in forested landscapes is an actively growing

field of study with many forest management, planning, and policy
applications. The field is expanding in terms of both theory (e.g.,
use of machine learning) and the application of digital soil maps
and other outputs to answer forest management and policy ques-
tions. Application of DSM will continue to grow as the process of
DSM is made more accessible, transparent, and understandable.
The workflow developed here provides a first step in achieving
these goals by providing aworkflowwith scripting tools that isflex-
ible to use in any region and can accommodate new models and
new plot and covariate data as they become available.
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