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A B S T R A C T   

Accurate digital elevation models are key data products used to inform forest management. Light detection and 
ranging (lidar) technologies have emerged as a useful tool for acquiring detailed terrain information, although 
the accuracy of this data is known to vary with topographic complexity and the density and characteristics of 
overlying vegetation. Single Photon Lidar (SPL) provides a high-density point cloud that can be acquired from a 
much higher altitude than discrete return, small-footprint lidar (hereafter, linear-mode lidar or LML), providing 
efficiencies and potential cost savings for operational mapping programs. Herein, we assess the absolute and 
relative accuracies of leaf-on and leaf-off SPL data acquired at different altitudes for characterizing terrain under 
varying vegetation types and densities and compare to results for LML data. Our assessment was forest-focused 
and primarily point based, using 299 Real-Time Kinematic survey checkpoints to quantify elevation errors (Δh); 
however, we also investigated and reported accuracy for linear transects, and conducted a wall-to-wall com
parison of the SPL-derived 1-m digital elevation models (DEMs) against an LML-derived DEM. Point cloud 
characteristics for the leaf-on 2018 SPL data were markedly different, with 88% of returns as first returns, 
compared to 17% for the LML, and 59% and 46% for the leaf-off SPL data acquired at 3800 m and 2000 m, 
respectively. Of the datasets considered herein, the SPL data acquired under leaf-on conditions in 2018 had the 
lowest accuracy and precision for characterizing terrain underneath vegetation cover, with an RMSE of 10.97 cm 
and a 95th quantile of 24.03 cm; however these values are within commonly accepted error limits for elevation 
products. The leaf-off SPL data were most accurate overall; however, the differences between the leaf-off SPL 
data acquired at 3800 m versus 2000 m were often minor (< 1 cm on average), with similar patterns in Δh 
between the two datasets (r = 0.8). In terms of the relative performance of the lidar datasets examined, results 
from the analyses of linear transects were similar to those of the checkpoints, but highlighted the variability in 
elevation accuracy within similar cover types. Wall-to-wall comparisons of the SPL-derived DEMs to the 2012 
LML DEM also corroborated the results of the checkpoint assessment, with the 2018 SPL leaf-on DEM having the 
largest differences (mean difference = 7.44 cm; RMSD = 18.07 cm). Differences between DEMs did not trend 
consistently with increasing canopy cover or with the percentage of returns that were within ±15 cm of the 
ground surface. We found that it was not only the density of the vegetation, but also the composition and 
configuration of both the overstory and understory vegetation that influenced the accuracy with which the lidar 
characterized the terrain surface. Overall, our results indicated that leaf-on SPL is capable of capturing terrain 
information under a wide variety of forest and vegetation conditions, albeit at a lower accuracy than what is 
possible with leaf-on LML or leaf-off SPL, but at a level of accuracy that is within acceptable limits for most forest 
applications.  
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1. Introduction 

Topography influences a range of biological, geomorphological, and 
hydrological process on the landscape, and the three-dimensional 
characterization of the Earth’s surface is a fundamental information 
need for the science and management of many natural resources, 
including forests (Moore et al. 1991). Accurate, high spatial resolution 
digital elevation data are critical for forest management and operational 
planning (White et al. 2012), particularly for road layout (Niemi et al. 
2017) and harvest planning (Holopainen et al. 2014), as well as for 
improving soil and ecosite mapping (Furze et al., 2017, van Rensen et al. 
2015). The importance of digital elevation information is evidenced in 
national mapping programs (Bolstad and Stowe, 1994, Gesch et al. 
2002, Natural Resources Canada, 2019) and global data products (Farr 
et al. 2007). A digital elevation model (DEM) is defined as an “ordered 
array of numbers that represent the spatial distribution of elevations 
above some arbitrary datum in a landscape” (Moore et al. 1991). 
Traditionally, elevation data were derived from photogrammetric data 
sources; however, light detection and ranging (lidar) technology 
emerged as an accurate alternative data source (Liu 2008) and for more 
than two decades, airborne laser scanning (ALS) data have provided an 
unprecedented solution to generating a digital elevation model (DEM) 
under forest canopy (Kraus and Pfeifer, 1998). ALS data is now used 
operationally in forest inventory and management and the benefits of 
lidar for these applications are well documented (Næsset, 2015, White 
et al. 2016). As a result, there is interest in increasing the efficiency and 
spatial extent of ALS acquisitions, while also reducing acquisition costs. 
Single photon lidar (SPL) represents a potential significant technological 
advance towards the rapid and cost-effective characterization of forest 
structure and terrain underneath canopy and over large areas (Swa
tantran et al. 2016). Quantifying the accuracy with which SPL tech
nology can characterize terrain elevations is critical information for end 
users of the derived DEM products (Wechsler 2007), who will use these 
data to sustainably manage the forest resource and plan their forest 
operations (White et al. 2016). 

Stoker et al. (2016) evaluated both single photon (HRQLS) and 
Geiger-mode lidar (IntelliEarth™) for use in the United States’ 3D 
Elevation Program (3DEP). Sub-areas of forest, urban, and mixed land 
use within a 1300 km2 area in northern Connecticut were identified for 
evaluation. Although no details were provided on the nature of the forest 
vegetation present, based on the location, it is assumed these were pri
marily hardwood forests (Wharton et al. 2004). The authors note that 
the forested sub-area was not evaluated for the HRQLS due to the 
presence of fog at the time of data acquisition, and the nature of the 
vegetation cover in the other areas with checkpoints was not reported. 
Non-vegetated vertical accuracy (NVA) and vegetated vertical accuracy 
(VVA) were calculated according to ASPRS positional accuracy stan
dards using both the point cloud directly and the derived DEM. For 
quality levels 1 and 2 (QL1/QL2), NVA must be less than 19.6 cm and 
VVA less than 29.4 cm (ASPRS (American Society for Photogrammetry 
and Remote Sensing), 2014). Both the HRQLS and Geiger-mode lidar 
failed to meet the VVA requirements and the authors attributed this 
result to poor foliage penetration in dense vegetation conditions. 

Li et al. (2016) also examined the performance of HRQLS SPL data 
for a 13 ha forest area in Maryland, and compared the derived DEM to an 
LML-derived DEM. The SPL data were acquired in leaf-off conditions 
(November 2014) from an altitude of 2286 m, whereas the LML data 
were acquired in leaf-on conditions (June 2003, ALS instrument not 
specified). The forest area was comprised of pines, oaks and heath 
shrubs, with undulating terrain. DEMs were generated from both data
sets with a 1 m spatial resolution. Elevation differences between DEMs 
ranged from − 50 cm to 50 cm, with the SPL data overestimating 
elevation relative to the LML. The authors attributed this difference to 
challenges in correctly filtering ground returns in the dense SPL data, 
with returns from small shrubs and trees erroneously identified as 
ground returns. 

Swatantran et al. (2016) evaluated the efficacy of leaf-on SPL data in 
mapping forest structure and terrain for a 1700 km2 area in Garrett 
County, Maryland. SPL data were acquired using the HRQLS instrument 
at an altitude of 2286 m. The study area was 67% forested and was 
dominated by second growth forests consisting of oaks, northern hard
woods, and hemlock-pine stands. Leaf-off LML data acquired in 2005 
with an average density of 1 point/m2 (and consisting only of first 
returns) were used as reference, along with 176 National Geodetic 
Survey (NGS) benchmarks and 71 variable radius field plots measured in 
2014. Compared to the NGS benchmarks, the SPL had an RMSE of 3.78 
m and a bias of − 2.12 m, whereas the LML had an RMSE of 3.17 m and a 
bias of − 0.5 m. Relative to the LML data, the bias of the SPL data was 
− 1.61 m. Based on analyses of subsequent data from a different area, the 
authors concluded that much of the error associated with the SPL in
strument was the result of instrument calibration bias. Swatantran et al. 
(2016) concluded that the higher solar noise observed in the daytime 
SPL acquisition would not be a limiting factor to the use of the data given 
further refinements to noise filtering, and that the observed bias of the 
SPL data could be reduced with better bias control and range calibration 
of the SPL data. 

Mandlburger et al. (2019) compared data from the Leica SPL100 and 
Riegl VQ-1560i (full waveform). Both datasets were acquired in leaf-on 
conditions to a specification of target last return pulse density of 20 
pulses/m2, for a 160 km2 area within the municipality of the City of 
Vienna. SPL100 data were acquired from an altitude of 4000 m with a 
pulse repetition rate of 50 kHz and a scan rate of 5 MHz with 60% 
sidelap. Of note, by specifying a target pulse density for the surveys, 
Mandlburger et al. (2019) were uniquely able to quantify some of the 
economies afforded by the SPL100 instrument. Whereas 5 flight lines 
with 20% overlap for the SPL100 could have achieved the target pulse 
density, 10 flight lines with 60% overlap were used to minimize scan 
shadows in the urban area. By comparison, the LML data were acquired 
using 18 flight lines with 50% overlap flown at an altitude of 750 m AGL 
to meet the target pulse density. Thus, the SPL swath width (2400 m) 
was nearly three times larger than that of the LML swath width (840 m), 
and the SPL data were acquired at an altitude that was five times greater 
than the LML. While a portion of the area analyzed was forested, Man
dlburger et al. (2019) provided no details on the nature or density of the 
forest types present. The authors visually compared the penetration 
capabilities of the two instruments and found that the LML out
performed the SPL in terms of overall pulse density and ground 
coverage, with the SPL mainly providing single returns concentrated in 
the upper vegetation canopy. The average number of returns per laser 
pulse was 1.84 for the LML compared to 1.06 for the SPL. Mandlburger 
et al. (2019) speculated as to whether aggressive post-processing of the 
SPL data to remove noise may have also removed useable returns from 
within the vegetation canopy. 

Brown et al. (2020) compared the performance of the Leica SPL100 
and the Optech Titan in a primarily urban environment of the University 
of Houston campus. The authors characterized the horizontal and ver
tical accuracies of the ALS data using 33 survey-grade GNSS check
points, and assessed ranging precision for flat surfaces and under tree 
canopies, the latter of which consisted of small groups of trees that were 
underlain by manicured lawns. The Leica SPL100 was acquired at an 
altitude of 3700 m AGL with a density of 25 pulses/m2, whereas the 
Optech Titan was acquired at 500 m AGL with a density of 12 pulses/m2. 
Both datasets were acquired within weeks of each other in leaf-on 
conditions and only the 532 nm wavelength from the Titan data were 
analyzed for comparability to the SPL100. In terms of horizontal posi
tioning, the authors found no statistically significant differences be
tween either of the ALS datasets and the reference checkpoints, but did 
find significant differences in vertical elevations indicative of systematic 
bias in the point clouds of both instruments. Relative to the checkpoint 
data, the SPL100 had an average vertical bias of 11.67 cm (standard 
deviation = 7.63 cm), whereas the Titan had an average vertical bias of 
− 13.27 cm (standard deviation = 7.88 cm). However, the authors 
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concluded that in terms of the magnitude of the error, there was no 
statistically significant difference in the vertical accuracies for the LML 
and SPL data. In their analysis of planar surfaces, the authors found that 
the SPL100 had lower ranging precision (standard deviation = 3.2 cm 
versus 1.2 cm for the Titan), and was more negatively impacted by 
surface properties, specifically increases in radiometric brightness and 
incidence angle. These findings are not unexpected given that the 
SPL100 data were acquired from an altitude that was more than seven 
times greater than the Titan data. DEMs generated from both data sets 
had a mean difference of 1.4 cm, noting that the study area was rela
tively flat and primarily urban. In terms of the impact of canopy cover on 
range precision, the SPL100’s range precision for flat terrain under 
canopy was 3.6 cm, compared to 3.0 cm in open terrain. For the Titan, 
range precision was 2.7 cm under canopy and 1.5 cm in open terrain. For 
both sensors, the difference between range precision values under can
opy and in the open was found to be significantly different. Similar to Li 
et al. (2016) and Mandlburger et al. (2019), the authors highlight noise 
filtering as the likely cause of the limited range resolution in the SPL100 
data. 

All of the aforementioned studies provide useful insights into the 
potential capacity of SPL data to accurately characterize the terrain 
surface underneath forest canopies. What is currently lacking however is 
a systematic investigation from a forestry perspective that examines the 
nature of SPL performance for characterizing the terrain surface un
derneath a range of forest types and vegetation densities, as well as 
acquisition conditions. The objectives of this study were therefore three- 
fold: (i) quantify the vertical accuracy and precision of terrain elevations 
for SPL data under a range of forest conditions (leaf-on and leaf-off) and 
acquisition altitudes (3800 m versus 2000 m; (ii) characterize differ
ences in penetration capabilities for SPL data under a range of different 
forest densities; and (iii) evaluate how differences in point clouds and 
vertical accuracy translate into the derived DEMs. Our study provides 
the first systematic investigation of SPL data for terrain mapping under 
forest canopies in leaf-on and leaf-off conditions. 

2. Material and methods 

2.1. Study area 

The Petawawa Research Forest (PRF) was established in 1918 and is 
the oldest, continuously operated research forest in Canada (Place 
2002). Located approximately 200 km northwest of Ottawa, the PRF 
extends over 10,000 ha of forested land (Fig. 1). The forests of both the 
PRF are dominated by mature Great Lakes–St. Lawrence mixedwood 
stands (70% by area) with remaining stands being primarily hardwood 
(22%) and conifer (8%) dominated. Approximately 85% of the forest 
land within the PRF is considered productive and includes several long- 
term conifer plantation studies that are unique to Canadian forestry. 
With its combination of experimental plots, plantations, and non- 
research areas, the PRF represents a heterogeneous mixture of forest 
conditions (White et al. 2019). The topography of the PRF has been 
impacted by glaciation and post-glacial outwashing. The area contains 
extensive sand plains, imposing hills with shallow sandy soils, bedrock 
outcrops, and areas of gently rolling hills with moderately deep loamy 
sand containing numerous boulders. Elevation across the study area 
ranges from approximately 100 m to 310 m above sea level. 

2.2. Reference ground data 

Real-time kinematic (RTK) survey data were acquired as control data 
using the NAD83 CSRS horizontal datum Version 6 (2010.0) UTM Zone 
18 projection and the CGVD2013 vertical datum (Hubert 2019). The 
control network consisted of three published control locations main
tained by the Ontario Ministry of Natural Resources and Forestry Con
trol Survey Information Exchange (COSINE) database, as well as eight 
additional control points, established as inter-visible pairs distributed 

within the project study area (Fig. 2). Due to the long baselines between 
COSINE monuments, the project control points were occupied for three 
hours with the roving unit. The derived coordinate files of all static 
positions were submitted for post-processing using Natural Resources 
Canada’s Precise Point Positioning (PPP) system.1 The accuracy of the 
RTK survey was within 2 cm for hard surfaces, with respect to the 
nearest control point, and 5–10 cm for natural ground surfaces. 

Coordinates and ground elevation values were acquired for a total of 
300 checkpoints within the PRF using a Sokkia FX 105 total station. 
These checkpoints represented a range of vegetated and non-vegetated 
conditions (Table 1). A total of 79 checkpoints were acquired in non- 
vegetated conditions (i.e. asphalt, gravel) and 221 checkpoints in 
vegetated conditions, that were characterized by the dominant tree 
species and or vegetation present (i.e. black spruce, coniferous planta
tion, intolerant hardwood, jack pine, low vegetation, mixedwood, red 
and white pine, and tolerant hardwood). Checkpoints were acquired 
along 50 or 100 m transects within each cover type group, with 
checkpoints located at 10 m intervals along the transects (Fig. 2). 

2.3. Lidar data 

Linear-mode lidar data were collected over the Petawawa Research 
Forest on August 17–20, 2012 using a Riegl 680i sensor on a Cessna 172 
aircraft flown at an average altitude of 750 m (Table 2). These data were 
acquired as full waveform, but delivered by the data provider as discrete 
return data in 1-km tiled classified LAS files (v1.1) in NAD83 CSRS 
horizontal datum, UTM Zone 18 projection, and CGVD28 vertical 
datum. Horizontal and vertical RMSE were reported as 14.1 cm and 5.1 
cm, respectively. PDAL (version 1.9.1) was used to transform the 2012 
LML LAS files to the same vertical datum (CGVD2013, Version 62,010.0) 
and LAS file format (v1.4) as the SPL data. The LAS tiles were manually 
reviewed to verify the quality of the transformation and the ground 
point classification. 

Leaf-on SPL data were collected over the Petawawa Research Forest 
on July 2, 2018. The Leica SPL100 sensor was flown aboard a Piper-PA- 
31-350 at an average altitude of 3760 m (Table 2). SPL data were also 
acquired for the Petawawa Research Forest on May 31, 2019 with a 
Leica SPL100 instrument flown aboard a Cessna F406 Caravan II aircraft 
at two different altitudes: approximately 3800 m (similar to that of the 
2018 leaf-on acquisition) and approximately 2000 m. As a result of a late 
spring, conditions for acquisition in 2019 were primarily leaf-off. All 
three SPL datasets were acquired according to the Ontario Specification 
for Lidar Acquisition (Ontario Ministry of Natural Resources and 
Forestry, 2016), with a 10-cm vertical accuracy class. Vertical RMSE for 
the 2018, 2019H, and 2019L were reported as 2.7 cm, 5.5 cm, and 5.4 
cm respectively, and horizontal RMSE was reported as <15 cm. Data 
processing and noise filtering for the three SPL datasets were completed 
by the data provider, using a consistent processing workflow and noise 
filtering algorithms, following the approach detailed by Gluckman 
(2016). SPL data were then classified using proprietary software tools 
and delivered as 1 km tiled LAS files (v1.4) in NAD83 CSRS horizontal 
datum Version 6 (2010.0), UTM Zone 18 projection, and CGVD2013 
vertical datum. LAS tiles were manually reviewed to verify the quality of 
the ground point classification and to ensure spatial alignment of the 
acquisitions. 

LML systems are able to record multiple returns (commonly 5 returns 
per pulse) of energy for each laser pulse; however, the amount of energy 
(i.e. the number of photons) required to trigger a return at the sensor is 
proprietary to each instrument. In LML systems, hundreds or thousands 
of photons may be required to trigger a return in order to reduce the 
impact of noise (i.e. photons from sources other than the laser; Brown 
et al. 2020). In contrast, a single photon can trigger a return at the sensor 
for an SPL system. The SPL100 system splits the emitted laser pulse into 

1 https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php 
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a 10 × 10 array of 100 beamlets and the returned energy from each 
beamlet is recorded onto a 10 × 10 array of highly sensitive detectors. 
These detectors have a very short recovery time (1.6 ns), which allows 
them to record multiple returns from each emitted laser pulse. These 
sensitive detectors, combined with the high repetition rate of the 
transmitter, represent the operational advantage of SPL technology for 
lidar acquisition. As a function of their design, SPL generate higher pulse 
densities relative to LML. However, while conventional lidars commonly 
operate at near-infrared wavelengths (e.g. 1064 nm), currently 
commercially available SPL instruments operate at green wavelengths 
(532 nm) and are thus sensitive to solar noise, highlighting a need for 
efficient noise filtering algorithms for SPL data (Stoker et al. 2016; Li 
et al. 2016; Brown et al. 2020). LML data must be acquired at lower 
altitudes (e.g. 750 m agl versus 3800 m for the SPL) and slower flying 
speeds (<100 knots compared to 180 knots for the SPL) relative to SPL 
(Wästlund et al. 2018, Mandlburger et al., 2019), both of which can 
increase flying time and data acquisition costs. It should be noted 
however that innovation in LML systems continues to increase the upper 
limit of acquisition altitude for these instruments as well. The SPL in
strument used in the assessments of Li et al. (2016), Swatantran et al. 
(2016), and Stoker et al. (2016) was the first generation HRQLS in
strument. The design of the second generation HRQLS sensor (marketed 
as the SPL100) was modified to enable the acquisition of high point 
densities at altitudes greater than 3100 m (Degnan, 2016). 

2.4. Digital elevation models 

Digital elevation models (DEM) with a spatial resolution of 1 m were 
generated for each of the four lidar acquisitions using returns classified 
as “ground” (class = 2) in the LAS files and following the methods of 
Axelsson (1999, 2000). DEM hillshades were visually inspected to verify 

quality and spatial alignment, and to ensure that there were no artifacts, 
anomalies, or gaps in the derived DEMs. A mask of the area common to 
all four lidar acquisitions was generated to restrict further analyses 
(representing approximately 4000 ha; Fig. 1). 

2.5. Forest inventory data 

Forest information was derived from a forest inventory representing 
2018 forest conditions. This inventory partitioned the PRF into distinct 
stands (polygons) representing relatively homogenous forest conditions 
in terms of species composition, forest structure, and management his
tories. The inventory was generated using a combination of expert 
knowledge, air photo interpretation, ground plot data, and management 
history. Several attributes from the forest inventory were used to 
interrogate differences between LML and SPL derived DEMs including 
land cover type, vertical complexity class, and forest planning unit 
(Ontario Ministry of Natural Resources and Forestry 2017). In the forest 
inventory data, broad land cover types are assigned to the stands to 
distinguish productive forest from other vegetation types. Land cover 
classes considered herein were brush and alder, forest, grass, open 
wetland, and treed wetland. The vertical complexity class characterizes 
the number of distinct tree layers within the stand, ranging from single 
layer stands to complex stands, wherein ages and heights are not 
considered to originate from a single disturbance event. Integral to the 
definition of vertical complexity is an indication of which layer is rele
vant for management (in the case of more than one layer): overstory or 
understory. Forest planning units are defined by a combination of forest 
type and silvicultural management system and provide a useful indicator 
of vegetation arrangement within the stand. In addition to these cate
gories, the forest inventory contained stand-level estimates of vertical 
canopy cover derived from the 2018 SPL data. These stand-level 

Fig. 1. Location of Petawawa Research Forest (A), terrain analysis area, and location of survey control data.  
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estimates were made at a 25 m gridcell resolution using a 50 cm spike- 
free canopy height model (CHM) that was generated from the 2018 SPL 
data. Canopy cover was determined as the percentage of CHM cells 
within each 25 m grid cell that had a height > 2 m, and values for all 25 
m grid cells within a forest stand were subsequently averaged to 
generate a stand-level estimate of cover. These estimates of cover were 
used to inform the wall-to-wall DEM analysis. 

2.6. Analysis approach 

To fully explore the nature of the differences between the datasets 
considered, we undertook a point-based assessment with the RTK 

Fig. 2. Location of RTK survey locations and sampled forest stands within the Petawawa Research Forest, including a stand dominated by (A) black spruce (transect 
E1), and (B) red-white pine (transect C4). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Detailed cover type groups and sample sizes used to summarize RTK checkpoint 
accuracy measures.  

Generalized 
Cover 
Type 

Number of 
checkpoints 

Detailed Cover 
Type 

Number of 
checkpoints 

Overall 299 N/A N/A 
Non-vegetated 79 Asphalt 32 

Gravel 47 
Vegetated 220 Black Spruce 37 

Coniferous 
Plantation 

21 

Intolerant 
Hardwood 

37 

Jack Pine 15 
Low Vegetation 14 

Mixedwood 34 
Red and White 

Pine 
27 

Tolerant 
Hardwood 

35  

Table 2 
Linear mode (LML) and single photon lidar (SPL) acquisition parameters and 
data characteristics.  

Parameter 2012 LML 2018 SPL 2019H 
SPL 

2019L 
SPL 

Acquisition date and 
conditions (leaf-on or 
leaf-off) 

August 
17–20 
Leaf-on 

July 1–2 
Leaf-on 

May 31 
Leaf-off 

May 31 
Leaf-off 

Sensor Riegl 680i Leica 
SPL100 

Leica 
SPL100 

Leica 
SPL100 

Laser wavelength (nm) 1550 532 532 532 
Laser beam divergence 

(mrad) 
0.5 0.08 0.08 0.08 

Average flying altitude (m 
AGL) 

750 3760 3760 2000 

Average flying speed 
(knots) 

<100 <180 <180 <160 

Pulse repetition frequency 
(kHz) 

150 60 60 50 

Scan Angle (degrees) ±20 ±15 ±15 ±15 
Swath Width (m) ~600–700 2000 2000 1000 

Aggregate Nominal Pulse 
density (pulses/m2) 

5.8 32.4 28.6 51.4 

Average ground pulse 
density (pulses/m2) 

1.3 2.8 3.8 5.5 

Percentage of returns that 
are first returns only 

17.1 88.3 58.4 46.4 

Ratio of first returns to 
second returns 

1.6 17.8 4.1 2.92  
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checkpoints, as well as an assessment based on linear RTK transects, and 
a wall-to-wall assessment for the derived DEMs. 

2.6.1. Assessment based on checkpoints 
The survey checkpoint data and corresponding lidar point clouds 

were evaluated using the GeoCue LP360 software package (version 
2018.2.59.0). The LML and SPL LAS files were imported into an LP360 
project and using the Control Points Report Dialog, a local TIN surface 
was generated for each checkpoint and each lidar acquisition and the Z 
values corresponding to the checkpoint location were extracted from the 
triangulated surface. Differences between each of the RTK-measured 
checkpoint elevations and the corresponding lidar elevations (Δh) 
were then calculated and summarized using both parametric (Fisher and 
Tate 2006) and non-parametric metrics (Höhle and Höhle 2009). Para
metric measures included the root mean square error (RMSE), mean 
error (ME), and the error standard deviation (S). The following equa
tions were used to calculate RMSE, ME, and S (Fisher and Tate 2006): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

Zlidar − Zref
)2

n

√

(1)  

ME =

∑
Zlidar − Zref

n
(2)  

S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ [(

Zlidar − Zref
)
− ME

]2

n − 1

√

(3)  

where Zlidar is the elevation measure from the lidar, and Zref is the 
elevation measure from the RTK survey for a sample of n points. RMSE 
provides an indication of the dispersion of errors, whereas ME provides 
an indication of bias. When ME is small, RMSE and S may be similar. The 
Friedman ANOVA by ranks test (Hollander and Wolfe 1973) was used to 
test for significant differences in Δh between the four lidar acquisitions. 
If a significant difference was found, a Wilcoxon matched pairs test 
(Siegel and Castellan 1988) was subsequently used to determine which 
lidar datasets had significantly different RMSE values. 

Following the approach of Höhle and Höhle (2009), differences be
tween the reference data and the four ALS datasets were examined to 
check for outliers. RMSE values calculated using Eq. 1 above were used 
to determine a threshold for screening of outliers. Any checkpoints with 
Δh values that exceeded three times the calculated RMSE value for that 
dataset were removed from further analysis. Each of the four ALS 
datasets were examined separately, using the RMSE value for that 
dataset, resulting in the identification of three outliers: one for the 2012 
LML data (a low vegetation checkpoint with Δh = 46.4 cm), and two for 
the 2018 SPL data (both black spruce checkpoints with Δh = 39.4 cm 
and 33.0 cm). Site photos and DEM hillshades of all three outliers were 
examined; however, only the low vegetation checkpoint was removed as 
it was clearly a temporary feature resulting from forest operations in 
2012 that was not present at the time of either the 2018 or 2019 SPL 
acquisitions. A total of 299 checkpoints were therefore retained for 
further analysis. 

In addition to ME, RMSE, and S, non-parametric measures of eleva
tion accuracy were also calculated, including the median (50% quan
tile), the Normalized Median Absolute Deviation (NMAD), the 68.3% 
quantile, and the 95% quantile. The median and NMAD were calculated 
using Δh, whereas the 68.3% (Q68) and 95% (Q95) quantile were 
calculated using the absolute value of Δh, as per the approach of Höhle 
and Höhle (2009). The median is less sensitive to outliers and is a robust 
indicator of any systematic shift in height values relative to the reference 
data. Q68 and Q95 provide an indication of the magnitude of the dif
ferences between the reference data and the ALS data, regardless of the 
sign of the difference (i.e. an overestimate or underestimate) and Q95 is 
often used to assess data according to accuracy benchmarks or stan
dards. The NMAD is proportional to the median of the absolute 

differences between errors and the median error and is considered an 
estimate of the standard deviation of the Δh values that is less sensitive 
to outliers (Höhle and Höhle 2009): 

NMAD = 1.4826×medianj
( ⃒
⃒∆hj − m∆h|

)
(4)  

where Δhj denotes the individual errors j = 1, …, n and mΔh is the median 
of the errors. 

Parametric and non-parametric results were summarized overall, 
and by the broad cover groupings of vegetated and non-vegetated cover 
types. Results were also summarized by detailed cover types (Table 1). 

To account for different densities of vegetation associated with each 
checkpoint, we calculated a Lidar Penetration Index (LPI) and assigned 
an LPI class to each checkpoint. The LPI is a ratio of the total number of 
returns found within ±15 cm of the ground surface, relative to the total 
number of returns, expressed as a percentage. The LPI was calculated 
independently for each lidar acquisition, and to enable processing, the 
lidar point clouds were clipped to a circular area (analogous to the area 
of a forest inventory field plot with a radius of 14.1 m and an area of 625 
m2) surrounding each checkpoint centroid. Non-vegetated checkpoints 
would be expected to have larger values for the LPI compared to vege
tated checkpoints, whereas different lidar acquisitions would have 
different penetration indices for the same cover types if the lidar data 
were acquired in leaf-off versus leaf-on conditions. Based on the distri
butions of LPI values for the checkpoints, four classes were defined to 
enable summary of the RTK checkpoint accuracy: LPI <10%, 10–20%, 
20–30%, and ≥ 30%. 

2.6.2. Assessment based on linear transects 
As the RTK checkpoints were acquired as linear transects, RMSE (Eq. 

1) was also calculated and reported by transect. In total, 36 transects 
were acquired in different dominant cover types, with an average 
transect length of 50 m. 

2.6.3. Assessment based on derived digital elevation models 
To assess the impact of leaf-on versus leaf-off conditions, as well as 

acquisition altitude on the SPL data, the wall-to-wall DEM generated 
from each of the SPL acquisitions was compared to the DEM derived 
from the 2012 LML data. Metrics used for comparison included the mean 
difference (MD; Eq. 5), Root Mean Squared Difference (RMSD; Eq. 6) 
and the 95th percentile of the absolute difference between the SPL and 
2012 DEMs. 

MD =

∑
Z2012 − ZSPL

n
(5)  

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Z2012 − ZSPL)
2

n

√

(6) 

We used the LPI in our assessment of DEMs, classifying LPI values 
into 10% classes. We likewise classified a slope surface generated from 
the 2012 LML DEM into 5◦ classes for our assessment. As noted earlier, 
topography in the study area is undulating and the elevation range is 
approximately 200 m. Slopes in the study area ranged from 0◦ to 85◦, 
with a mean of 6.6◦ and a standard deviation of 5.3◦. Approximately 
80% of the analysis area (Fig. 1) had slopes <10◦, and < 1% of the 
analysis area had slopes that were > 25◦. 

3. Results 

3.1. Assessment based on checkpoints 

Elevation differences between the surveyed RTK checkpoints and the 
lidar datasets were not normally distributed (Shapiro-Wilk W p < 0.05), 
moreover, the magnitude of Δh were larger for the 2018 SPL data 
(Fig. 3). Furthermore and as indicated in Fig. 4, patterns in the elevation 
residuals (∆h) were not consistent among the four datasets, with 
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differences evident in the magnitude and direction (positive or negative 
Δh). The most similar patterns in Δh were found between the 2019 leaf- 
off acquisitions (R2 = 0.633), whereas the least similarity was found 
between the 2018 leaf-on and 2019 leaf-off SPL acquired at 3800 m 
(2019H, R2 = 0.195). Elevation differences for the 2012 LML were most 
similar to those of the 2019 leaf-off SPL acquired at 2000 m (2019L, R2 

= 0.303). 
The overall RMSE was largest for 2012 LML data (10.47 cm) and 

lowest for 2019L SPL data (8.56 cm; Table 3). The mean error indicated 
that all datasets had a negative bias and underestimated elevations 
relative to the reference data. Of note, the 2018 SPL data had the lowest 
mean error (− 0.88 cm; Table 3), and the largest error standard deviation 
(S = 10.12 cm); however the 2018 SPL also had the most symmetrical Δh 
distribution (Fig. 3). For non-vegetated cover, RMSE was largest for 
2012 LML (11.82 cm), which also had the largest mean error (− 10.91 
cm) and error standard deviation (4.58 cm). It should be noted that 
given the amount of time elapsed between the 2012 data acquisition and 
the RTK survey, some results presented for the 2012 LML should be 
interpreted with caution, in particular those for non-vegetated surfaces. 
Both asphalt and gravel road surfaces within the study area are main
tained for seasonal conditions, and for gravel roads in particular, this 
can result in minor changes in surface elevation over time. Although the 
2018 SPL had the lowest non-vegetated RMSE (7.36 cm), it also had the 
largest vegetated RMSE (10.97 cm) and was the only lidar dataset with a 
positive bias (0.96 cm) for vegetation (Table 3). Results of the Friedman 
test indicated a significant difference in Δh overall, and for non- 
vegetated and vegetated checkpoints (p < 0.05). Average elevation er
rors for 2018 SPL were significantly different from the 2012 LML and 
2019H and 2019L SPL Δh, whereas the 2012 LML Δh were only signif
icantly different from the 2018 SPL. 

Overall, the non-parametric results (Table 4) indicate similar results 
to the parametric measures: the 2012 LML had the largest median ∆h 
(− 7.8 cm), while the 2018 SPL had the largest NMAD (11.42 cm) and 
largest Q95 (21.39 cm). Also similar to the parametric results reported in 
Table 3, the 2012 LML had the largest NMAD (4.3 cm) and Q95 (17.36 
cm) for the non-vegetated cover types (Table 4). Of note, the 2019L SPL 

had the largest median difference for the vegetated classes (− 6.5 cm), 
although the 2018 SPL had the largest NMAD (11.93 cm) and Q95 
(24.03 cm). 

By vegetated cover type, the 2012 LML had the largest RMSEs for 
tolerant and intolerant hardwoods, whereas the 2018 SPL had the 
largest RMSE for black spruce and low vegetation, and the 2019H and 
2019L SPL had the largest RMSE for mixedwood (Table 5). The Fried
man test indicated significant differences in Δh for all cover types except 
red and white pine. Pairwise significant differences in Δh were common 
between the 2018 SPL and other lidar datasets, particularly the 2019 
leaf-off SPL. In contrast, differences between 2019H and 2019L were 
rarely significant for different cover types (Table 5). Results for non- 
parametric measures were similar (Supplement Table S1): black 
spruce had the largest Q95 (29.40 cm; 2018 SPL) and mixedwood had 
the largest NMAD of all the vegetated classes (12.97 cm; 2018 SPL). 

Overall, the median LPI for the non-vegetated checkpoints was 
24.9%, 34.2%, 37.1% and 39.7% for 2012 LML, 2018 SPL, 2019H SPL, 
and 2019L SPL, respectively. This compares to the median value for 
vegetated checkpoints, which were 7.9%, 13.7%, 18.2%, and 17.9% for 
LML, 2018 SPL, 2019H SPL, and 2019L SPL, respectively. Representa
tion of the vegetated RTK checkpoints relative to the LPI classes varied 
by lidar acquisition (Fig. 5). The 2018 SPL had the largest number of 
checkpoints with <10% of lidar returns coming from within ±15 cm of 
the ground, followed by the 2012 LML, which also had the fewest 
number of checkpoints that had ≥30% of returns coming from within 
±15 cm of the ground surface. As expected, the leaf-off SPL acquisitions 
resulted in more near-ground returns and larger LPI values; however, 
there were minimal differences in the distribution of checkpoints among 
the LPI classes for both of the leaf-off 2019 SPL acquisitions, despite 
differences in acquisition altitude (Fig. 3). There were no consistent 
trends in Q95 or RMSE with increasing LPI (Table 6). For the 2012 LML 
and 2018 SPL data, RMSE and Q95 were larger when LPI was <10% and 
smaller when LPI was ≥30%. For the checkpoints, an increasing LPI did 
not translate into greater accuracy in estimating terrain elevation. 

Fig. 3. Distribution of checkpoint Δh values for the four lidar datasets: 2012 LML, 2018 SPL (acquired at 3800 m, leaf-on), 2019H SPL (acquired at 3800 m, leaf-off), 
and 2019L SPL (acquired at 2000 m, leaf-off). 
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Fig. 4. Scatterplots of checkpoint Δh for all combinations of the 2012 LML and 2018 SPL (acquired at 3800 m, leaf-on), 2019H SPL (acquired at 3800 m, leaf-off), 
and 2019L SPL (acquired at 2000 m, leaf-off). 
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3.2. Assessment based on linear transects 

Assessments of the 36 linear transects indicated variability in terrain 
elevation accuracy within cover types (Supplement Table S2). We found 
no clear trend in error associated with the range of elevation covered by 
the transect or the transect length. Some of the transects have relatively 
consistent level of errors across all four lidar datasets considered herein 
(e.g. C5, D2, D5), whereas other transects revealed marked differences 
in performance between lidar datasets (e.g. E1, F2, G2). Overall for the 
vegetated transects, the 2018 SPL had the lowest accuracy and the 
greatest range in RMSE (mean = 10.06 cm, standard deviation = 5.10 
cm) and Q95 (mean = 16.31 cm, standard deviation = 7.28 cm). Fig. 6 
shows the point cloud profile for transect E1, which was located in a 
black spruce stand (also shown in Fig. 2, Inset A). Transect E1 had the 
largest RMSE for the 2018 SPL data (Supplement Table S2). The lack of 
ground returns underneath the dense understory in the SPL 2018 
compared to the other lidar datasets is clearly evident in Fig 6. 

3.3. Assessment based on derived digital elevation models 

Overall, the DEM derived from the 2018 SPL data had the largest 
differences relative to the 2012 LML DEM, overestimating elevation by 
an average of 7.44 cm, an RMSD of 18.07 cm, and a Q95 of 36.03 cm 
(Table 7). Of note, overall results for the 2019H and 2019L acquisitions 
were very similar, despite differences of ~1800 m in acquisition alti
tude. RMSD also varied by broad cover type from the 2018 forest in
ventory data. Again, the 2018 DEM had the largest RMSD and Q95 for 
the majority of classes, with the exception of the open and treed wetland 
cover types, for which the 2019L DEM had the largest RMSD and Q95 
values (Table 8). Whereas the 2018 SPL data overestimated elevation for 
all cover types, both of the 2019 SPL underestimated elevation relative 
to the 2012 DEM. Of note, the RMSD and Q95 were lowest for the forest 
cover type. The 2018 SPL in particular had large differences for grass 
(RMSD = 29.11 cm), whereas the all three SPL datasets had large 

Table 3 
Parametric measures of checkpoint elevation residuals (Δh) between RTK survey 
data and LML and SPL data for overall, non-vegetated, and vegetated cover types 
as per Fisher and Tate (2006). Letters represent the results of the Wilcoxon 
matched pairs test and indicate which lidar datasets had significant differences 
in ME Δh (p < 0.05).   

Metric (cm) 2012 
LML 
a 

2018 
SPL 
b 

2019H 
SPL 
c 

2019L 
SPL 
d 

OVERALL (299) RMSE (cm) 10.47 10.14 9.18 8.56 
ME (cm) − 6.50 − 0.88 − 6.08 − 6.36 
S (cm) 8.22 10.12 6.90 5.74 
Wilcoxon 
MP 

b a,c,d b,d b,c 

Non-vegetated 
(79) 

RMSE (cm) 11.82 7.36 9.48 9.14 
ME (cm) − 10.91 − 6.02 − 8.60 − 8.32 
S (cm) 4.58 4.26 4.00 3.81 
Wilcoxon 
MP 

b,c,d a,c,d a,b a,b 

Vegetated (220) RMSE (cm) 9.94 10.97 9.08 8.34 
ME (cm) − 4.92 0.96 − 5.17 − 5.66 
S (cm) 8.01 11.31 6.73 5.06 
Wilcoxon 
MP 

b a,c,d b,d b,c  

Table 4 
Non-parametric measures of checkpoint elevation residuals (Δh) between RTK 
survey data and LML and SPL data for overall, non-vegetated, and vegetated 
cover types as per Höhle and Höhle (2009). NMAD is the Normalized Median 
Absolute Deviation.    

2012 
LML 

2018 
SPL 

2019H 
SPL 

2019L 
SPL 

OVERALL 
(299) 

Median (cm) − 7.80 − 1.90 − 6.60 − 6.80 
NMAD (cm) 7.86 11.42 6.08 4.74 
68.3% 
Quantile (cm) 

12.01 9.21 10.00 9.00 

95% Quantile 
(cm) 

18.13 21.39 16.84 14.41 

Non-vegetated 
(79) 

Median (cm) − 11.10 − 6.10 − 8.40 − 8.00 
NMAD (cm) 4.30 3.71 4.00 3.85 
68.3% 
Quantile (cm) 

13.34 7.80 10.74 10.29 

95% Quantile 
(cm) 

17.36 14.18 16.31 14.02 

Vegetated 
(220) 

Median (cm) − 5.25 0.20 − 5.50 − 6.50 
NMAD (cm) 8.30 11.93 7.04 4.67 
68.3% 
Quantile (cm) 

10.20 9.80 9.70 8.80 

95% Quantile 
(cm) 

18.11 24.03 16.82 14.51  

Table 5 
Parametric measures of elevation residuals (Δh) between RTK survey data and 
LML and SPL data, by cover type as per Fisher and Tate (2006). Results of the 
Wilcoxon matched pairs test indicate which ME Δh were significantly different.  

Cover Type Metric 2012 
LML 
a 

2018 
SPL 
b 

2019H 
SPL 
c 

2019L 
SPL 
d 

Asphalt (32) RMSE (cm) 12.34 8.92 8.98 8.77 
ME (cm) − 11.88 − 8.23 − 8.53 − 8.30 
S (cm) 3.38 3.52 2.85 2.87 
Wilcoxon 
MP 

b,c,d a a a 

Gravel (47) RMSE 11.46 6.07 9.80 9.38 
ME − 10.25 − 4.51 − 8.65 − 8.30 
S 5.17 4.10 4.65 4.37 
Wilcoxon 
MP 

b,c,d a,c,d a,b a,b 

Black Spruce (37) RMSE (cm) 9.79 14.69 8.21 7.58 
ME (cm) − 1.82 9.08 − 0.37 − 2.08 
S (cm) 9.75 11.70 8.32 7.38 
Wilcoxon 
MP 

b,d a,c,d b,d a,b,c 

Coniferous 
Plantation (21) 

RMSE (cm) 9.16 4.82 9.74 8.58 
ME (cm) − 2.19 5.61 − 8.93 − 8.30 
S (cm) 9.12 4.23 3.98 2.27 
Wilcoxon 
MP 

c,d c,d a,b a,b 

Intolerant 
Hardwood (37) 

RMSE (cm) 11.38 9.90 8.22 8.42 
ME (cm) − 9.44 − 3.82 − 6.95 − 7.61 
S (cm) 6.44 9.26 4.45 3.65 
Wilcoxon 
MP 

b,c a,c,d a,b a,b 

Jack Pine (15) RMSE (cm) 4.67 4.17 8.85 4.22 
ME (cm) 2.87 1.95 7.73 2.87 
S (cm) 3.80 4.32 4.47 3.21 
Wilcoxon 
MP 

c c a,b,d c 

Low Vegetation 
(14) 

RMSE (cm) 6.37 13.55 2.60 4.97 
ME (cm) 1.43 9.92 − 0.43 0.18 
S (cm) 6.68 10.28 2.76 5.33 
Wilcoxon 
MP  

c,d b b 

Mixedwood (34) RMSE (cm) 9.38 13.22 11.73 11.12 
ME (cm) 1.43 3.04 − 10.59 − 9.89 
S (cm) 7.60 13.06 5.12 5.16 
Wilcoxon 
MP 

b,c,d a,c,d a,b a,b 

Red White Pine 
(27) 

RMSE (cm) 10.21 9.53 9.78 8.28 
ME (cm) − 4.20 − 3.09 − 6.04 − 6.48 
S (cm) 9.48 9.19 7.84 5.25 
Wilcoxon 
MP     

Tolerant 
Hardwood (35) 

RMSE (cm) 11.85 9.22 8.62 8.14 
ME (cm) − 10.80 − 3.38 − 7.59 − 7.06 
S (cm) 4.95 8.70 4.14 4.12 
Wilcoxon 
MP 

b,c,d a,c,d a,b a,b  
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differences with the 2012 LML DEM in the open and treed wetland, 
likely as a result of seasonal differences in vegetation and soil moisture 
for these cover types. 

RMSD and Q95 increased with increasing slope, with the 2018 SPL 
data having larger differences in elevation relative to the 2012 LML data 
by slope class, while the results for the 2019H and 2019L SPL data were 
similar (Table 8). In contrast, differences between the 2012 LML and SPL 
DEMs did not increase with increasing canopy cover (Fig. 7). For the 
2018 SPL DEM, when canopy cover increased from 0 to 10% to 11–20%, 
RMSD and Q95 increased 3 cm and 8 cm, respectively. Beyond 20% 
canopy cover, MD, RMSD, and Q95 were relatively stable. The 2018 SPL 
data had larger RMSD and Q95 values than either of the 2019 leaf-off 
SPL acquisitions (Fig. 7). 

We also examined differences in DEMs by LPI. As indicated in Fig. 8, 
at <10% canopy cover, average LPI were similar for leaf-on and leaf-off 
SPL data. However, as canopy cover increases, LPI decreases, and at 
>60% canopy cover, LPI decreases more for the 2018 leaf-on SPL data, 
while the LPI for the leaf-off acquisitions converge. At 91–100% canopy 
cover, the mean LPI for the 2018 SPL data is 6%, compared to ~20% for 
the leaf-off SPL acquisitions (Fig. 8). In terms of differences between 
DEMs, results for LPI were similar to results for canopy cover with no 
consistent trend in RMSD and Q95 with increasing LPI. Whereas the 

2018 SPL DEM consistently overestimates elevation relative to the 2012 
LML DEM, the leaf-off SPL data tend to underestimate elevation relative 
to 2012 until LPI > 70% (Supplement Table S3). 

Vertical complexity classes from the forest inventory data were used 
to gain some insight into the impact of vegetation configuration on DEM 
differences. We found that the largest differences relative to the 2012 
LML DEM for all data sets were not associated with the most complex 
vertical structure class, but rather with single layer stands that had re
sidual veterans in the overstory: all SPL DEMs overestimated elevation 
relative to the 2012 LML DEM for this stand type and had the largest 
RMSD and Q95 values (Table 9). For the 2018 SPL, the complex stand 
type was the next most challenging vertical structure, overestimating 
elevations by 8.92 cm and having an RMSD of 18.15 cm. Generally, the 
leaf-on SPL overestimated terrain elevations relative to the 2012 LML 
DEM, whereas the leaf-off SPL data underestimated elevations and the 
difference between leaf-off SPL data acquired at different altitudes was 
minimal. 

Forest planning units, defined by a combination of forest type and 
silvicultural management system, are another means by which to cate
gorize structural difference between forest stands and assess the 
resulting impact of vegetation configuration on the penetration of the 
laser pulses through the canopy and associated impacts on terrain 

Fig. 5. Distribution of vegetated RTK checkpoints by Lidar Penetration Index (LPI) class and lidar acquisition.  

Table 6 
Summary of results for RTK checkpoint analysis, by LPI class.   

RMSE (cm) Q95 (cm) 

LPI Class 2012 2018 2019H 2019L 2012 2018 2019H 2019L 

<10% 10.51 11.70 7.89 7.09 18.35 24.50 15.08 12.49 
10–20% 10.41 7.85 10.12 8.33 18.57 14.03 17.60 14.10 
20–30% 10.95 9.02 9.06 10.04 15.84 22.20 17.12 16.67 
≥30% 9.20 7.12 7.88 7.67 16.70 10.72 12.00 12.50  
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accuracy. By this stratification, cedar stands managed via clearcutting 
had the largest RMSD and Q95 values, followed by tolerant hardwood 
uniform shelterwood. In contrast, RMSD for jack pine clearcuts was <9 
cm for all DEMs, with relatively consistent differences across all three 
SPL acquisitions (Table 10). 

The configuration and composition of the overstory and understory 
vegetation influences the degree to which lidar pulses can penetrate the 

Fig. 6. Profile of lidar point clouds for transect E1, which is located in a black 
spruce stand. Ground returns (shown in red) are notably absent in the 2018 SPL 
leaf-on data underneath the dense vegetation understory. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 7 
Overall summary of differences between 2012 LML and SPL DEMs.  

Metric 2018 2019H 2019L 

MD (cm) − 7.44 0.80 0.74 
RMSD (cm) 18.07 13.37 13.27 
Q95 (cm) 36.03 25.56 25.23  

Table 8 
Summary of differences between 2012 LML and SPL DEMs, by cover type and slope class.   

MD (cm) RMSD (cm) Q95 (cm)  

2018 2019H 2019L 2018 2019H 2019L 2018 2019H 2019L 

LAND COVER TYPE 
Brush and alder − 11.43 6.39 7.80 28.69 20.04 21.68 55.22 40.49 41.93 
Forest − 7.56 0.58 0.36 17.01 11.57 11.31 33.71 22.55 22.03 
Grass − 19.69 2.35 1.29 29.11 11.02 10.38 66.30 20.08 18.23 
Open wetland − 3.10 5.73 7.15 27.52 27.92 28.84 58.66 59.83 64.20 
Treed wetland − 5.60 3.21 2.71 24.03 24.82 25.15 56.61 63.19 64.59 
SLOPE CLASS (forest only) 
<5◦ − 8.36 0.09 − 0.25 16.35 10.96 10.67 32.90 21.27 20.83 
5–10◦ − 7.10 0.91 0.80 16.37 10.94 10.60 32.35 21.54 20.95 
10–15◦ − 6.82 1.00 0.93 17.88 12.23 11.96 35.09 24.06 23.30 
15–20◦ − 6.29 1.09 1.06 18.89 13.89 13.29 36.95 27.65 26.89 
20–25◦ − 6.81 1.45 0.79 22.80 15.32 15.37 50.98 30.70 30.45 
>25◦ − 4.94 1.64 0.84 29.67 23.62 25.94 60.78 48.97 47.01  

Fig. 7. Summary of differences between 2012 LML and SPL DEMs (MD, RMSD, 
Q95), by canopy cover class (%). 
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canopy and reach the ground surface (e.g. as per transect E1 in Fig. 6). 
Fewer ground returns can increase the error in DEM interpolation 
methods and result in artifacts in the derived DEM (Liu 2008); however, 
as demonstrated by Hodgson and Bresnahan (2004), increased 

interpolation may actually result in improved elevation accuracy under 
some cover types as a function of small neighbourhood smoothing under 
vegetation types where the number of ground returns may be more 
variable (e.g. deciduous). As indicated in the results presented herein, 

Fig. 8. Average LPI by canopy cover class.  

Table 9 
Summary of differences between 2012 LML and SPL DEMs by vertical complexity class.   

MD (cm) RMSD (cm) Q95 (cm) 

VERTICAL COMPLEXITY 2018 2019H 2019L 2018 2019H 2019L 2018 2019H 2019L 

Single layer (SI) − 7.27 1.51 1.45 16.54 11.33 10.81 33.80 22.60 21.48 
Single layer with residual veterans (SV) − 12.34 − 2.07 − 1.57 22.50 14.16 12.89 48.30 26.04 24.79 
Two-tiered, overstory is management layer (TO) − 6.17 − 0.20 − 0.36 15.61 11.22 11.11 30.24 21.82 21.67 
Two-tiered, understory is management layer (TU) − 7.54 2.56 1.97 17.80 12.55 12.32 36.21 24.09 23.51 
Two-tiered plus residual veterans, overstory is management layer (MO) − 7.87 1.77 1.49 17.59 13.64 13.45 34.01 25.61 24.86 
Two-tiered plus residual veterans, understory is management layer (MV) − 7.48 5.04 3.01 14.45 11.33 10.33 32.00 20.58 23.09 
Complex, ages/heights not from a single disturbance (CX) − 8.92 0.73 0.45 18.15 11.50 11.19 36.15 22.60 21.92  

Table 10 
Summary of differences between 2012 LML and SPL DEMs by planning forest unit.   

MD (cm) RMSD (cm) Q95 (cm) 

PLANNING FOREST UNIT 2018 2019H 2019L 2018 2019H 2019L 2018 2019H 2019L 

Yellow birch seed tree − 7.47 0.42 0.08 15.05 10.95 10.45 30.88 22.46 19.92 
Cedar clearcut − 8.34 − 0.15 0.45 22.01 13.72 13.24 44.47 26.33 26.14 
Tolerant hardwood selection − 8.55 0.22 − 0.23 18.29 11.50 11.18 36.91 22.53 22.39 
Tolerant hardwood uniform shelterwood − 10.86 2.78 − 0.47 20.61 8.25 7.00 46.49 12.89 13.62 
Intolerant hardwood clearcut − 7.81 2.17 1.49 17.74 10.89 10.77 34.03 21.21 20.71 
Mixed conifer clearcut − 8.10 2.85 2.69 17.92 12.44 11.98 36.35 24.54 23.26 
Mixed hardwood clearcut − 8.73 1.87 1.29 17.57 11.90 11.54 35.00 22.75 22.22 
Red oak uniform shelterwood − 6.16 − 0.47 − 0.68 15.20 10.37 10.53 29.40 20.21 20.12 
Jack pine clearcut − 3.21 − 1.92 2.10 8.74 7.83 7.15 17.51 15.42 13.47 
Red pine plantation − 8.58 3.67 4.10 19.67 10.88 10.78 44.66 21.78 20.24 
Red pine clearcut − 6.95 0.66 0.30 16.32 11.68 11.59 34.10 21.13 21.38 
White pine seed tree − 8.71 − 1.32 − 0.66 17.51 11.79 11.33 33.25 24.24 22.20 
Pine uniform shelterwood − 7.26 − 0.96 − 0.79 16.83 12.07 11.73 33.33 23.56 23.20 
White spruce plantation − 4.91 3.14 2.02 13.11 10.26 9.43 25.31 21.23 19.00  

J.C. White et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 252 (2021) 112169

13

the 2018 SPL leaf-on data had fewer ground returns, lower values for the 
LPI, and larger RMSE for the checkpoint analyses. Fig. 9 illustrates how 
these factors translate into the derived DEMs. The inset maps in Fig. 9 
show an area in a single layer stand with a residual veteran overstory 
(“SV”; Table 9) in a white pine seed tree stand (Table 10). Larger 
interpolated facets are clearly evident in the 2018 SPL DEM (Fig. 9). 
Fig. 10 shows the variation in the number of pulses within ±15 cm of the 
ground surface (i.e. used to calculate LPI) for the inset area in Fig. 9, 
with the notable sparseness of the 2018 SPL leaf-on data. 

4. Discussion 

4.1. Assessment based on checkpoints and transects 

Point-based surveys are often undertaken to quantify the absolute 
accuracy of lidar acquisitions relative to some pre-determined standard 

(ASPRS (American Society for Photogrammetry and Remote Sensing), 
2014). Such point-based assessments are however rarely undertaken in 
forest environments across a range of different forest conditions and as a 
result, these assessments fail to provide insight as to how different 
densities and configurations of vegetation may be impacting the degree 
to which lidar data can accurately characterize the terrain surface. 
Herein we provided a comprehensive assessment of the impact of 
vegetation on the accuracy of four different lidar acquisitions, in order to 
determine how the characteristics of these data influence the accuracy of 
the derived terrain information, with particular emphasis on the influ
ence of leaf-on and leaf-off conditions on the SPL data as well as the 
impact of acquisition altitude. 

Acquisition parameters influenced the characteristics of the lidar 
data examined herein (Table 2). The 2018 SPL data were acquired in 
leaf-on conditions from an altitude of 3800 m and had an aggregate 
nominal pulse density (ANPD) of 32.4 pulses/m2. This ANPD is slightly 
greater than the ANPD of the 2019H SPL data (28.6 pulses/m2), which 
were acquired at the same altitude as the 2018 SPL, but in predomi
nantly leaf-off conditions. The 2019L SPL was also acquired in pre
dominantly leaf-off conditions, but from an altitude that was almost half 
that of 2019H (2000 m). The 2019L ANPD was 51.4 pulses/m2. The 
2012 LML data had a markedly lower ANPD than the SPL at 5.8 pulses/ 
m2. Another key difference in the datasets was that 88.3% of returns for 
the SPL 2018 data were first returns, compared to 58.4% and 46.4% for 
the SPL 2019H and 2019L respectively, and only 17.1% for the 2012 
LML data. 

For the vegetated classes, which are the primary target of interest for 
this study, the results of the checkpoint assessment indicated that the 
leaf-on 2018 SPL was the least accurate and least precise data source for 
characterizing surface elevations under vegetation among the lidar 
datasets examined in this study. For vegetated classes, the 2018 SPL had 
the largest RMSE (10.97 cm) and the largest error standard deviation 
(11.31 cm; Table 3), as well as the largest NMAD (11.93 cm) and Q95 
(24.03 cm; Table 4). However, the accuracy with which the 2018 leaf-on 
SPL data captures the terrain surface is within acceptable limits of 
published standards for a 10-cm vertical accuracy (i.e. Canada’s CQL1, 
USGS’ QL2). Leaf-off SPL acquisitions resulted in improvements in 
elevation accuracy, with a 17% reduction in RMSE for the 2019 leaf-off 
SPL data acquired at the same altitude as the 2018 leaf-on SPL (3800 m). 
However, a reduction in flying altitude had less impact on elevation 
accuracy, resulting in a reduction in RMSE of only 8% for the 2019 leaf- 
off SPL acquired at 2000 m agl, relative to the higher altitude SPL leaf- 
off acquisition (Table 3). 

Stoker et al. (2016) assessed the Q95 for non-vegetated and vege
tated checkpoints for HRQLS data acquired from an altitude of 2293 m 
agl in leaf-on conditions (ANPD = 23 pulses/m2) and compared results 
to those of leaf-off LML data. Using 31 checkpoints, the authors reported 
a non-vegetated Q95 for the HRQLS data of 17.2 cm (LML = 12.3 cm), 
and a vegetated Q95 of 17.4 cm (using 17 checkpoints; LML VVA = 19.8 
cm). In contrast to the results of Stoker et al. (2016), we found that the 
2012 LML leaf-on data assessed herein performed more poorly than the 
2018 leaf-on SPL data in non-vegetated conditions (79 checkpoints, Q95 
= 17.36 cm (LML) versus 14.18 cm (2018 SPL)). However, as noted 
earlier, road surface maintenance can alter terrain surface elevations, 
particularly for gravel roads. The LML was more accurate than the 2018 
SPL in vegetated conditions (220 checkpoints, Q95 = 18.11 cm for LML 
versus 24.03 cm for 2018 SPL; Table 4). 

Overall, the RMSE we report for the RTK checkpoint assessment of 
the three SPL datasets considered herein ranged from 8.56 cm to 10.14 
cm (Table 3), which is markedly lower than the 3.78 m RMSE reported 
by Swatantran et al. (2016) for the HRQLS SPL data (the predecessor of 
the SPL100 instrument used to acquire the data examined herein). Our 
assessment approach is most similar to that of Brown et al. (2020), who 
also used checkpoint data (N = 33) to assess SPL100 data, and reported 
that the SPL data overestimated elevation by an average of 11.67 cm 
(standard deviation = 7.63 cm). Average errors or RMSE alone however 

Fig. 9. Impacts of vertical complexity and cover type on derived DEMs. Cover 
types for a subset of the study area (A) showing forest vertical complexity or 
cover type. The extent of panel A relative to the study area as a whole is shown 
in panel B. The insets C–F show a 1 m hillshade generated from the DEMs for 
each of the four lidar datasets. 
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can be misleading, underscoring the importance of considering a num
ber of different parametric and non-parametric measures to assess 
elevation accuracy (Höhle and Höhle 2009). For example, similar to the 
results of Brown et al. (2020), our checkpoint assessment also indicated 
that the 2018 SPL100 data acquired in leaf-on conditions overestimated 
elevation in vegetated areas, but only by an average of 0.96 cm, whereas 
the 2019H and 2019L leaf-off SPL100 underestimated elevation by 5.17 
cm and 5.66 cm respectively, and the 2012 LML underestimated 
elevation by an average of 4.92 cm (Table 3). Metrics such as the RMSE, 
elevation standard deviation, Q95, and NMAD enable a more compre
hensive assessment of data performance and by all these measures, the 
2018 leaf-on SPL data were the least accurate and least precise data 
source for characterizing terrain in vegetated areas (Tables 3 and 4). 

However, it must also be noted that the 2018 SPL Q95 value for the 
vegetated classes are within the accepted level of error for vegetated 
classes (ASPRS (American Society for Photogrammetry and Remote 
Sensing), 2014). Indeed all the SPL datasets assessed herein were within 
the 10-cm vertical accuracy class, with Q95 < 30 cm for vegetated 
classes (Table 5). 

Brown et al. (2020) also assessed the capacity of SPL100 and Optech 
Titan to penetrate the tree canopy and record multiple returns from 
within the canopy. The authors sampled 30 tree canopies (the size and 
composition of which were not reported). Only 22% of emitted SPL100 
pulses had multiple returns compared to 87% of the Titan’s emitted 
pulses. Overwhelmingly, the SPL100 pulses had 1 or 2 returns only, with 
less than 1% of pulses having 3 or more returns, whereas 50% of the 

Fig. 10. Density for near ground (±15 cm) returns (in white) for LML and SPL acquisitions.  
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Titan’s emitted pulses had 3 or 4 returns. For the SPL100, the majority of 
second returns were from the ground. We found similar characteristics 
for the leaf-on SPL 2018 data assessed herein. For example, the ratio of 
first to second returns was 17.8 for the SPL 2018, compared to 4.1 and 
2.92 for the SPL 2019H and 2019L, and 1.6 for the 2012 LML (Table 2). 
This concentration of returns from the upper canopy in the 2018 SPL 
leaf-on data were likewise indicated by the LPI for the 2018 SPL data: 
73% of the vegetated checkpoints used in this analysis had <10% of 
their returns from within ±15 cm of the ground surface, whereas the 
2012 LML data had 58% of checkpoints in this LPI class, and the leaf-off 
SPL data had less than 7% of checkpoints in this class. Note that the 
overall ground pulse density for the 2012 LML data (which was also leaf- 
on) is less than half that of the 2018 SPL data (Table 2). Brown et al. 
(2020) posited that the higher ground pulse densities of the SPL100 
under vegetation were a function of more pulses being emitted initially, 
and not the result of superior penetration by the SPL pulses vertically 
through the vegetation canopy. Yu et al. (2020) similarly found that 
SPL100 data had a higher relative number of ground returns compared 
to Optech Titan, but that Titan data had a higher proportion of ground 
returns in multi-layer stands. 

Mandlburger et al. (2019) found that the SPL100 had greater 
dispersion than the LML used for comparison, with SPL terrain eleva
tions having a standard deviation that was three times that of the LML. 
While we did not observe the same magnitude of difference in the 
standard deviations of the LML (S = 8.01 cm) and the 2018 leaf-on SPL 
(S = 11.31 cm), we did find that the 2018 SPL had the largest error 
standard deviation of all the lidar datasets (Table 3), as well as the 
largest NMAD (Table 4). Note that for the vegetated classes, the NMAD 
of the leaf-on 2018 SPL data (11.93 cm) was 2.5 times larger than the 
NMAD of the 2019 leaf-off SPL data acquired from 2000 m (4.67 cm). 
Several authors highlight potential issues with noise filtering algorithms 
(Li et al. 2016, Mandlburger et al., 2019, and Brown et al. 2020). All of 
the SPL data used in our study was filtered by the data provider using the 
same processing workflow and algorithms, and we found no evidence of 
systematic issues in misclassification of ground returns or anomalous 
canopy heights. The characteristics of the SPL data summarized in 
Table 2, particularly the concentration of first returns in the 2018 leaf- 
on data may in part be attributable to aggressive noise filtering by the 
data provider; however differences in the LPI between the 2018 leaf-on 
and 2019 leaf-off data acquired from the same altitude (3800 m agl) 
suggest that there are penetration challenges in leaf-on SPL data (Fig. 8 
and Supplement Table S3). 

Analyses by vegetation type provided useful insights on the vari
ability in elevation accuracy. Unique to the 2018 SPL data were chal
lenges with black spruce (RMSE = 14.69 cm; Q95 = 29.40 cm) and low 
vegetation (RMSE = 13.55 cm; Q95 = 24.74 cm), which had the largest 
RMSE and Q95 values. Mixedwood was a common challenging class for 
all the SPL datasets, having among the largest RMSE (Table 5) and Q95 
(Supplement Table S1) values. Mixedwood stands are complex assem
blages of vegetation and crown forms, often with dense understory. 
Simpson et al. (2017) likewise found that low stature undergrowth (e.g. 
ferns) caused the greatest errors in elevation (RMSE >1 m) in leaf-on 
LML-derived DEMs. However in contrast to the results of Simpson 
et al. (2017), we did not find a clear relationship between understory 
density and elevation residuals, as indicated by the results we report for 
the LPI analyses for the both the checkpoints (Table 6) and the wall-to- 
wall DEM comparisons (Supplement Table S3; Fig. 8). This result sug
gests that in some forest types, it is not solely the density of the under
story vegetation, but also the complexity and configuration of the 
vegetation throughout the vertical profile of the canopy that influences 
elevation accuracy. 

Analysis of the survey transects revealed variability in accuracy 
within cover types, as well as challenges for the 2018 leaf-on SPL data 
for obtaining ground returns (Fig. 7). Despite differences in acquisition 
altitude, results for 2019H and 2019L were very similar. Although the 
results for vegetated classes overall are significantly different for 2019H 

and 2019L (Table 3), the only vegetated classes for which these two 
datasets had significantly different Δh values were for black spruce and 
jack pine. Thus, despite the 2019L SPL data having a ground pulse 
density that is ~30% greater than the 2019H data, the gain in accuracy 
for elevation capture is much smaller (decrease in RMSE of 0.74 cm) 
than the gain achieved for the leaf-off 2019H compared to the 2018 leaf- 
on SPL data (decrease in RMSE of 1.89 cm). Moreover, the swath width 
of 2019L SPL data was half that of the 2019H SPL (Table 2), which 
would likely reduce any operational gains in acquisition efficiency for 
large areas that would be afforded by the SPL data, with comparatively 
small gains in elevation accuracy. 

4.2. Assessment based on derived digital elevation models 

To better understand how differences in the lidar data examined 
herein translated into the DEM, we compared the 1 m DEMs derived 
from the leaf-on and leaf-off SPL data to the DEM generated using the 
2012 LML data. It should be noted that the method used to generate the 
DEM can influence outcomes (Bater and Coops 2009); however, 
benchmarking has revealed that all methods of interpolation can ach
ieve similar levels of accuracy with proper calibration (Stereńczak et al. 
2017). Herein, DEMs were generated for each lidar dataset using the 
same approach and the same parameter settings. Li et al. (2016) 
compared 1 m DEMs derived from LML and SPL data, with their SPL data 
acquired using the HRQLS in leaf-off conditions from an altitude of 
2286 m agl. The HRQLS data had a pulse density of 10 pulses/m2, with 
35.23% of returns classified as ground returns, a ground pulse density of 
3.6 pulses/m2, and a ground pulse spacing of 0.52 m. The authors noted 
that these statistics were biased by a small non-forest portion of their 
study area, and for the area that was actually forested, the ground pulse 
density was more in the order of 1–2 pulses/m2 with “the vast majority” 
of the returns coming from the forest canopy. For the LML data (sensor 
not specified) used by Li et al. (2016), approximately 31.51% of the LML 
returns were from the ground surface, resulting in a ground pulse den
sity of 0.26 pulses/m2 with a pulse spacing of 1.96 m. The authors re
ported that the leaf-off SPL data overestimated elevation by an average 
of 21.4 cm (standard deviation = 35.5 cm) relative to the leaf-on LML 
data. Li et al. (2016) concluded that although the SPL data had a pulse 
density that was 10 times that of the LML, this increased density was 
concentrated in the canopy and not on the ground surface, indicating a 
need to revisit filtering algorithms and to further explore and quantify 
the penetration capability of SPL in leaf-on conditions. 

In our study and similar to Li et al. (2016), we used the DEM 
generated from the 2012 LML as a reference and assessed the relative 
differences between the DEMs derived from the various SPL acquisi
tions, allowing us to determine the impact of leaf-on versus leaf-off 
conditions and acquisition altitude on the characterization of the 
terrain surface under varying vegetation conditions. However, our 
analysis of the DEMs does not allow us to say which of the SPL acqui
sition is more accurate, as the 2012 LML data itself cannot be assumed as 
truth (as we learned from the checkpoint analysis reported in Tables 3 
and 4). In our relative comparison of the SPL DEMs, we found similar 
results from the two DEMs generated from the leaf-off SPL data acquired 
at different altitudes. In both cases and in contrast to Li et al. (2016), the 
MD in elevation relative to the leaf-on 2012 LML DEM, was less than 1 
cm, the RMSD was ~13.3 cm and Q95 was ~25.5 cm (Table 7). We 
found that the leaf-on SPL data acquired in 2018 had the largest MD, 
overestimating elevation relative to the 2012 LML by 7.44 cm, with an 
RMSD of 18.07 cm and Q95 of 36.03 cm (Table 7). Similar to the results 
of the checkpoint and transect analyses, differences between the leaf-on 
and leaf-off SPL acquisitions were larger than the differences between 
the two leaf-off SPL datasets acquired at different altitudes. 

We found that differences between the LML and SPL DEMs were 
generally lowest for forest vegetation types and largest for open wetland. 
Whereas the 2018 SPL DEM consistently overestimated terrain elevation 
relative to the LML DEM, the 2019H and 2019L SPL consistently 
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underestimated elevation in vegetated cover types (Table 8). The 2018 
SPL DEM had the greatest differences with the LML DEM for grass 
(RMSD = 29.11 cm, Q95 = 66.30 cm), overestimating terrain elevations 
by an average of ~20 cm. As a seasonal cover type, grasses were likely 
markedly different at the time of the leaf-off SPL data acquisition. The 
leaf-off SPL DEMs had the largest difference for the open wetland, 
underestimating elevation relative to the LML DEM by 5.73 cm (2019H) 
and 7.15 cm (2019L). Again, there are important seasonal differences in 
these cover types: both open and treed wetland can have saturated soils 
and/or a thick layer of sphagnum moss that can fluctuate in elevation as 
water levels change. Freeze and thaw cycles can likewise change surface 
elevations over time and through the seasons. 

From a forest management perspective, several stand conditions 
were particularly challenging and these included stand types associated 
with standing surface water and saturated soils or stands that have dense 
understory vegetation above the ground surface. Examples include black 
spruce (Table 5, Supplement Table S1,and Fig. 6), open and treed 
wetland (Table 8), and cedar clearcuts (Table 10). The RTK survey used 
herein was acquired in 2019, a year in which the growing season started 
very late relative to seasonal norms and conditions were very wet, which 
made it challenging to determine true ground level in black spruce 
stands in particular. Increasing canopy cover did not result in a 
concomitant increase in RMSD with the LML DEM (Fig. 7). Wästlund 
et al. (2018) postulated that SPL100 data did not saturate as quickly 
with increasing canopy cover compared to Optech Titan data and was 
better able to characterize denser vegetation types. Our results would 
indicate that it is not just the density, but rather the composition, 
configuration, and density of both the overstory and understory vege
tation that influences the performance of the lidar for characterizing the 
terrain surface, as exemplified by the RMSD values for the different 
vertical complexity classes (Table 9) and different forest planning units 
(Table 10). More complex management scenarios (e.g. tolerant hard
wood uniform shelterwood) present very different configurations and 
densities of vegetation compared to more simplistic scenarios (e.g. jack 
pine clearcut). Moreover, the degree to which vegetation configuration 
and density impacts the accuracy of the terrain characterization also 
depends on the nature of the terrain itself, as we also found increasing 
differences between LML and SPL DEMs with increasing slope (Table 8): 
RMSD and Q95 doubled for all SPL datasets when considering slopes 
<5◦ compared to slopes >25◦. The terrain in our analysis area is un
dulating with a 200 m range in elevation and 80% of the analysis area 
having slopes that are <10◦. The performance of SPL data in more 
complicated topographic contexts and on steeper slopes merits further 
investigation, as the impacts of topographic conditions on LML data 
have been well documented in the literature (Hodgson et al. 2005; Su 
and Bork 2006; Bater and Coops 2009; Gatziolis et al. 2009; Stereńczak 
et al. 2017). 

5. Conclusion 

Accurate capture and characterization of the terrain surface is an 
important information need for natural resource management, particu
larly for forests. Lidar has become the benchmark standard for gener
ating accurate DEMs in forested areas, and the emergence of new lidar 
technologies, such as SPL, which enable rapid and efficient large area 
data collections, may lead to lower acquisition costs. However, these 
new technologies operate and capture information differently than 
conventional (LML) sensors. Determining the degree to which these 
differences impact the accuracy of terrain capture was the primary 
objective of this study. Our results demonstrated that leaf-on SPL data 
were less accurate than leaf-on LML data in capturing elevation data 
under a range of vegetation conditions. Our results also demonstrated 
that leaf-off SPL data were more accurate than the leaf-on LML data we 
used herein, and also more accurate than leaf-on SPL data acquired at 
the same altitude. However, we found that the gains in accuracy affor
ded by acquiring leaf-off SPL data at a lower altitude were minor by 

comparison. Our results demonstrate that the accuracy with which 
terrain elevations can be captured in vegetated conditions is not influ
enced solely by the density of the overlying vegetation but by the 
configuration and composition of the vegetation throughout the vertical 
profile of the canopy. For the terrain conditions of our study area, SPL 
technologies, whether they are acquired in leaf-on or leaf-off conditions, 
were capable of characterizing the terrain surface with the required 
level of accuracy to support forest management applications. 
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