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Dear Ms. Vescio 

We are pleased to submit the final report for the project 10B-2018 “Forest Health Monitoring from 
Satellite Capture and Machine Learning”.  Please find the enclosed document and final progress report. 

As mentioned, we will be in touch with the Ministry of Natural Resources and Forestry to present the 
results of this project directly. 

We would like to thank the Forestry Futures Trust Committee to allowing GSI to participate in the 
Knowledge Transfer and Tool Development program. 

Please feel to reach us if you have any questions or comments. 

 

Sincerely, 

 

Peter Young 

Interim CEO 
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Executive Summary 

In this project, GSI attempted to determine if it was possible to use artificial intelligence to analyse satellite 
imagery to monitor the health of the forest by detecting areas of concern with the end goal of reducing or 
eliminating the Ministry of Natural Resources and Forestry (OMNRF)’s current annual aerial survey method. 
GSI has used its models powered by its patented machine learning algorithms successfully in many forestry 
applications across the globe over the years. By adapting these algorithms and using reference data from 
the OMNRF, we turned our focus to detecting areas of tree damage caused by either biotic or abiotic factors 
(excluding fire). We applied three separate methods to detect this damage using: 

1. LiDAR Reference Data: Train with height data to identify areas of significant structure change which 
is more typical of abiotic damage caused from several weather events.  

2. Change Detection Across Time Periods: Adapting our fire detection algorithms, to compare a pre-
damage period to a post-damage period and comparing for differences outside of normal expected 
changes (e.g. leaf-on vs leaf-off)  

3. OMNRF Aerial Damage Survey Data: Using the OMNRF annual aerial damage surveys to train our 
models we attempted to predict in areas where we reserved the survey data and/or in the same 
area the year after.  

Overall, the results were less than satisfactory; however, Method #1 did show promising results by clearly 
mapping the outline of annual harvest which we see as a direct resemblance to damage such as windthrow. 
As a result, it is strongly plausible to expect this method would be successful; however, the OMNRF damage 
reference data did not contain any visually recognizable abiotic damage (using 20 cm resolution imagery) 
to validate this hypothesis.  

The other two methods did not predict any discernible patterns of damage when compared to the OMNRF 
damage reference data. For Method #3, we believe that the generalized polygons identifying damage are 
too general in the sense that they likely include both damaged and un-damaged trees within; therefore, our 
models are likely predicting the presence of both conditions resulting in a more random scatter. 

GSI suggests that if the OMNRF has further interest in developing an automated method to detect areas of 
potential damage, they should focus on improving the data quality and location precision of the damage 
data. GSI would invite the opportunity to continue working with the OMNRF on such improvements.  

Overall objectives 

The original goal of this project was to determine if it was possible to detect forested areas that may be 
affected by some pathogen (biotic or abiotic) through satellite-based remote sensing technology combined 
with artificial intelligence models.  Ideally, forest pathogens or damage can be detected early enough to 
allow for mitigation measures to prevent further damage (e.g. harvest) or better, possible treatment to 
prevent further decline in health (e.g. aerial spray) and help prevent further forest timber losses. 

The project used three different methodologies each to be applied in a two-stepped approach.  We first 
attempted to detect forest damage in a yearly manner, then if successful, we would move onto a finer time 
scale of a within-year approach.  

To train our ForestNow platform, we used reference data provided by the Ministry of Natural Resources 
and Forestry (OMNRF) which included LiDAR, aerial damage surveys, and historic forest inventory data.  This 
reference data is used for both training the ForestNow machine learning platform and validation of results.    

This project timeline spanned across two time periods.  The Year-1 portion covered the years from 2015-
2018 and the Year-2 portion added the year 2019. 
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Deliverables 

Deliverables are in raster format.  The raster format is pixel-based (10m resolution) which is an excellent 
format for displaying results and are flexible as it could allow forestry analyst to auto-delineate areas of 
concern based on specific thresholds of damage.  If such a threshold is specified, GSI has the capability to 
perform this auto-delineation to provide maps of damage areas. 

Area of Interest 

The area of interest (AOI) used in this project is the Romeo Malette Forest (Figure 1). 

 

Figure 1. Map showing the area of interest (AOI); the Romeo Malette Forest (RMF).   

Romeo Malette Forest, Ontario 

The Romeo Malette Forest (RMF) was chosen as suggested by the OMNRF since there were several 
concurrent trials occurring on that forest with the acquisition of new single-photon LiDAR, and there is 
currently a concerning spruce budworm outbreak occurring in the northwest portion of this forest.  This 
area was also used as part of two other project carried out by GSI. 

Target Audience and Benefits  

All forest stakeholders can benefit from monitoring forests for damage since early detection allows for more 
treatment options.  Such treatments could lead to reducing spread and/or salvage harvesting timber before 
it decays beyond minimum merchantable quality specifications.  As such, the following stakeholders will no 
doubt have an interest in forest health monitoring data: 

• Government of Ontario – Ministry of Natural Resources and Forestry (OMNRF) 

• Forest Industry Companies 

• Government of Canada – Food Inspection Agency 
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Model Data 

Satellite Images 

GSI used both reflectance (multi-spectral bands) and synthetic aperture radar (SAR) from various publicly 
available satellite images (e.g. Sentinel 1 and 2, Modis, Landsat, etc). Reflectance data provides a much 
broader range of useful data; however, since it cannot penetrate through clouds, its frequency of clear 
usable scenes can be limiting. GSI has internal processes to reduce the impact caused by cloud cover from 
supplementing the model with the use of partially clear scenes.  SAR on the other hand, can penetrate 
through cloud (therefore more frequently reliable); although, the data bands it provides do not allow for an 
in-depth analysis compared to reflectance bands.  

GSI continuously ingest images throughout the calendar year and as a result, it can detect changes occurring 
through the year which may be unique to a specific species being affected by a pathogen for example.   

This method is like our species identification process which was explored in another Knowledge Transfer 
and Tool Development project.  Please refer to the following document for more process and result details: 
http://www.forestryfutures.ca/upload/464883/documents/69DB663DDC7DB0E8.pdf 

Training Data 

The primary source for the training data was provided by the OMNRF; specific data used was as follows: 

• Lidar Point Cloud: Captured in 2018 using Single Photon (~25 points/m2). 

• Lidar-Based CHM model (0.5m x 0.5m) 

• OMNRF Annual Health Aerial Surveys:  A polygon shapefile identifying areas of damage by specific 
biotic or abiotic factor. 

Methodology 

Approaches 

GSI applied three methods to assess the feasibility for identifying biotic or abiotic damage to the forest; 
though, excluding fire as per the OMNRF’s guidance.  Each of these methods are further described below.  
The general approach for each method was to first determine if it was possible to positively identify a year-
to-year detection of damage.  If possible, then we would explore whether it was possible to detect damage 
within-year (excluding Method 1). 

GSI uses a regression-based approach to generate our raster layer predictions which involves training with 
examples of known conditions or measurement such as aerial survey data at specified locations or tree 
attributes derived from LiDAR survey data.  The training data is then fed into the system along with satellite 
imagery for the same locations within an acceptable timeframe inline with the training data.   

This regression approach is more effective and flexible compared to an alternate approach which is a 
classification-based analysis.  Regression provides a precise quantitative approach where it predicts a 
continuous range of data for every pixel.  For example, in this project, the range of values for each pixel is a 
gradient from 0-100% which represents the probability that the pixel has a presence of tree damage or in 
the case of tree heights, a predicted height in meters. 

In the original proposal we planned on analysing multiple years which included 2015; however, due to the 
absence of images, the analysis of 2016 was not possible.  Since this project involves comparing one year to 
the next, the first possible predicted outcomes will be for 2017 as a result. 

 

http://www.forestryfutures.ca/upload/464883/documents/69DB663DDC7DB0E8.pdf
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Method 1 - Annualized height estimates using LiDAR 

This method consists of using differences in height estimate between years to find areas that have been 
disturbed.  This method is more suited to find disturbances such as blowdown or ice damage which was the 
focus of this project.  This method could also be used to identify burnt or harvest areas; however, those two 
sources of disturbances were explicitly excluded as per OMNRF’s directive. 

GSI used the 2018 LiDAR data to derive a Canopy Height Model (CHM) and we used that 2018 training to 
predict heights for 2016, 2017, and 2018 using images from each of those years.  To avoid an over-fitting to 
2018 reference data, we use a 50:50 split method which is training on one half of the data (using an east-
west split) to train the model then predict on the other half.  We repeat doing the reverse split and combine 
both predicted halves together to produce an independently derived height model for 2018 to create a 
result that avoids predicting and training on the same pixel. 

With a height model for each year, GSI compared between years to attempt to detect areas of significant 
disturbance inline with the areas identified by OMNR aerial survey. 

Method 2 – Detect annual damage from year-to-year change detection 

GSI extrapolated from a previously developed methodology used in detect forest wildfire damage, where 
we attempted to modify algorithms to detect changes from one year to the next.  This method does not 
need training data to initialize, rather it based on a comparison of phenology differences from one year to 
the next while trying to identify areas falling outside a “normal” expected range of variation.  This method 
on its own will not detect the source of the change; however, its results could be used to highlight areas 
where further resources should be deployed to investigation further.  

Method 3 – Using OMNRF aerial survey data to predict next year’s damage 

GSI used the OMNRF annual health aerial survey data of a given year to train with, and then apply that 
training to satellite images of the next year to identify potential new areas of damage.  Using the health 
data of that next year, we compared the effectiveness of our prediction against this real data. 

We also attempted to predict the next year’s damage by sub-dividing the year into quarters to see if 
detection is also noticeable at that time scale. 

Using the OMNRF annual health aerial survey data, GSI converts this data from a damage/no-damage 
dichotomous raster coverage for each source of damage.  Then using the regression approach, GSI predicts 
a gradient of damage (0-100%) in a wall-to-wall fashion for every 10-meter pixel of the AOI.  The result is a 
damage probability layer for each source of damage.   

Validation 

Validation of results is a crucial step in assessing the accuracy of the results and the most important factor 
is the independence of the validation.   

The annual health data provided by the OMRNF is in polygon shape which is collected via human 
observation from a fixed-wing flight flown a grid pattern from which data is recorded at a relatively high 
speed.  GSI sees two potential concerns with this data that became more obvious as we progressed through 
this project:  

1) The areas outlined as damaged are likely generalized to include damage and non damaged 
locations.  We conjecture that there is a high likelihood that the polygons include nondamaged 
trees and thus translates to presence of damage information with low precision for specifically 
identifying damaged sites.   
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2) There is a clear north-south linear pattern that is visually noticeable from the mapped patterns of 
observed damage (Figure 2).  We conjecture this is likely the result of the flight grid and suggest 
there may some “blind spots” in the recorded data.  

 

Figure 2. A sample area of the recorded 2018 forest health aerial survey results showing areas of recorded 
damage.  A noticeable north-south linear pattern is obvious. 

We assume the data to be 100% correct and use it for model training and cross-validation.  The impact of 
this initial assumption is two-fold: 1) model training with this data will likely include both false-positives and 
false-negatives, which would lead to a less precise training, and 2) cross-validating with this data could thus 
result in what appears to be false-positives in the survey data “blind spots” mentioned previously.   

The GSI machine learning algorithms are very robust and can still predict reasonable result despite having 
imprecise data; however, due to the nature of the reference data, the validation for this project must be 
largely based on a subjective visual observation which we will present visuals to support our observations 
and conclusions.   

Results 

Between-Year and Within-Year Damage Detection 

We tested both approaches of attempting to detect damage across years and within-year.  The between-
year approach yielded some mix results.  However, there were some compelling results for some of the 
years where the outcomes were predicted which is further detailed in each of the below sections outlining 
the Methods separately.   

Once we ran the between year approach, we then identified areas showing strong correspondence between 
predicted and observed damage.  We then tested the within-year approach for areas identified for change 
between years. We completed a total of 76 different iterations of within-year assessments.  the results here 
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did provide any notable change in vegetation state within year that we could identify.  These within-year 
results are not documented further because we were unable to extract anything valuable for change 
detection. 

Method 1 

Method 1 uses LiDAR as its raw training data. This application yielded some very good results in line with 
the original intent of this part of the project.  This method was primarily to detect windthrow and/or ice 
damage.  However, the reference data provided by the OMNRF for the RMF was imprecise as mentioned 
above and were thus inadequate for GSI to use as validation for this method.  We also carried out a visual 
inspection tree damage in 2018 with the 2018 high-resolution (20-centimeter) provided by the OMNRF.  
Figures 4 and 5 below are some examples of OMNRF disturbance polygons identifying wind and ice damage.  
They both showed the disturbance was visually unidentifiable or undetectable with the between year 
approach. 

 

Figure 4.  Example showing an area identified as having wind damage from the annual aerial survey 
overlaid on a 20-centimeter 2018 image where no noticeable damage is identifiable. 
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Figure 5.  Example showing an area identified as having ice damage from the annual aerial survey overlaid 
on a 20-centimeter 2018 image where no noticeable damage is identifiable. 

As a result, we focused our attention on analysing harvested areas as a surrogate for this type of damage 
instead since those areas have a clear height differential before and after.  Results for this test were 
excellent with a clear differentiation between years and comparison to annual update polygon shapes as 
shown in the series of images in Figure 6.  The bottom right image shows minimal differences between GSI’s 
predicted results versus the OMNRF’s reference data. 

An important thing to highlight about this method is that GSI can predict heights in years where there is no 
LiDAR reference data available.  The LiDAR data available was from the year 2018; however, GSI predicted 
heights for 2016, 2017, and 2018 with enough accuracy to clearly outline where harvest has occurred across 
years.  This is highlighted by the results of the implied harvest for the year 2017 which is derived from the 
height difference between GSI’s predictions of the 2016 and 2017 years (Figure 6, image #2).   
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Figure 6. Shows a progression of steps using GSI’s method of training with 2018 LiDAR and comparison to 
annually reported harvest polygons (from top to bottom and left to right).  1) A 20-centimeter resolution 
aerial image taken in 2018. 2) Gradient of height difference between 2016 and 2017 satellite images.  3) 
Gradient of height difference between 2017 and 2018 satellite images 4) Polygon shapes of harvested 
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areas by applying a threshold and a smoothing filter to #2 and #3. 5) The outline of the annual report 
harvest polygon shapes.  6) An overlay of #5 overtop #4 to show the comparison of the auto-delineation 
with reported harvest. 

Method 2 

GSI tested changed detection in a comparison methodology where no training data is used.  This method 
compares one time period to another and tries to detect any significant phenology changes between the 
two periods.  This method was adapted from one of our existing models where the algorithms clearly 
identified the pre- and post-change from wildfires; however, in the case of this project, we were not able 
to detect changes with any discernable pattern that was close to the areas of damage provided by the 
OMRNF.  We were able to detect harvested areas where the change is much more drastic; however, we 
found that our Method 1 was still more effective than this one.   

The results from another KTTD showed that we could predict relatively stable results for tree attributes 
year-on-year for the same harvest blocks which suggest GSI can distinguish between various conditions 
effectively.  The results from GSI’s “Project: 9B-2018 - Post-Harvest Surveys from Satellite Capture and 
Machine Learning” showed that we could successfully predict tree species composition and attributes (i.e. 
height, density and stocking) with minimal variation between years.  This “normalization” of the signal from 
satellite images across years for a given area is very important when analysing areas where no change is 
expected; however, finding changes in areas where the damage does not immediately kill and/or 
completely defoliate a tree is more complicated since the phenology change can be more temporary.  For 
example, in the case of spruce budworm damage, the insect typically only eats the current year’s foliage; 
therefore, the host tree species (spruce and fir) do not permanently change color until several years of 
heavy defoliation where the trees succumb, and all foliage turns brown. 

However, we believe that the damage from the biotic and abiotic in this forest and/or time period were too 
subtle to detect.  The variations from one year to the next remained within our models’ thresholds; 
therefore, no areas of damage were detected.  This phenomenon is likely due to significant differences 
across year’s in the: 1) within seasonal phenology changes, 2) year-to-year differences in atmospheric 
differences, and 3) timing of images causing too much “noise” in the analysis. 

Method 3 

Predicting 2018 Damage 

Given our limited successes using Methods 1 and 2, GSI took a stepwise approach where we started with 
scenarios where there was the best chance at success.  This approach meant that we started with the years 
that had the most cloud-free satellite images throughout the growing season which is based on our previous 
experience on other projects.  We only analyzed damage from the eastern spruce budworm and the large 
aspen tortrix as they were the only 2 with enough reference data.  Only the spruce budworm damage 
prediction showed any sign of plausibility; therefore, the results are presented for this type of damage only. 

The following were the stepped approach taken and observations of the results: 

1. Based on our preliminary assessment, we initially started by using the 2017 OMNRF damage data 
to train from with 2017 images to predict damage in 2018.  This year pairing had the most abundant 
satellite images in each year.  Unfortunately, the results were disappointing with minimal visual 
correlation against the OMRNF damage reference data from 2018.  The predicted result had no 
discernible pattern to the reference data.  All four steps were completed; however, all gave similar 
results. 

2. With the results of step 1 in hand, we then tested whether it was possible to train and predict 
accurately for data in the same year.  We conjectured this approach would elicit a determination as 
to whether any correlation existed at with the OMNRF’s reference data.  However, same-year 
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analysis does require model over-fitting to be controlled.  Overfitting occurs when training and 
predicting is completed on the same pixels as areas identified as damage and when no data is 
withheld for independent cross-validation.   Without independent cross-validation the accuracy 
measure of a training model alone obfuscates accuracy where there is no refence training data.   
(see Figure 7). We ran our initial analysis on 2018 data as it also had the most cloud free sentinel 
images.  Figure 8 depicts the mapped results which show improved visual matching compared with 
the earlier approach that trained in one year and predicted in another.  With this said, there 
seeming appears to be too much random presence prediction scattered outside known presence 
locations. In the Year-2 component of the project, we then explored using the 2018 predicted 
damage data from the satellite imagery and based on the OMNRF damage data to train and predict 
potential damage using 2019 satellite imagery.  the predicted data in 2019 was then compared to 
the 2019 OMNRF damage data as cross-validation.  We tested two new methods but neither 
showed results did with any significant consistency with the 2019 reference data.  The two attempts 
were: 

a. Training with the 2018 OMNRF damage data in the original polygon form to predict results 
for 2019 (Figure 9).  No visual correlation was deduced from this attempt. 

b. Same scenario as a) with the difference of using the 2018 results of step #2 instead of the 
original reference data from the OMNRF. (Figure 10).  Similarly, no visual correlation was 
deduced from this attempt. 
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Figure 7. Shows the results of GSI’s 2018 predicted proportional damage by training the 2018 OMNRF 
damage data and predicting on 2018 satellite imagery overtop the same area.  There is a clearly a visual 
correlation of the results compared to the OMNRF 2018 reference data which is a result of overfitting. 
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Figure 8. Shows the results of GSI’s 2018 predicted proportional damage by training with the 2018 OMNRF 
damage data and predicting on 2018 satellite imagery where areas of training and predicting are 
separated for a more independent process.  There is a clearly a visual correlation of the results compared 
to the OMNRF 2018 reference data on the left side caused by overfitting while the right side does show 
a weaker correlation; however, demonstrates some plausibility from an independent prediction. 
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Figure 9. Shows the results of GSI’s 2019 predicted proportional damage by training with the raw 
(polygon) 2018 OMNRF damage data on 2018 satellite imagery and predicting on 2019 images.  No visual 
correlation between the results and the reference data can be deduced. 
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Figure 10. Shows the results of GSI’s 2019 predicted proportional damage by training with pre-processed 
(raster) 2018 OMNRF damage data on 2018 satellite imagery and predicting on 2019 images.  No visual 
correlation between the results and the reference data can be deduced. 

Conclusion 

We were able to show some consistency in tracking between disturbance linked to harvest which 
demonstrates plausibility for more significant damage events like windthrow.  However, we were 
unsuccessful in using any of the OMNRF’s damage data as source to train and predict with.  We tested 
running models directly, in aggregate of polygons, training in 1 years and predicting the next, and training 
in the same year.  In all cases we had low quality results.  We believe the specific reason for this was because 
the ONMRF data polygons themselves likely have low precision and consist of amalgamation of locations 
that include presence and absence of each driver of forest / tree damage.  GSI suggests that if the OMNRF 
had further interest in developing an automated or smart method to detect areas of potential damage- 
OMNRF should focus on improving the data quality and location precision of the damage data.  GSI would 
invite the opportunity to continue working with the OMNRF on such improvements.     

 

 

 


