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Executive Summary 

Airborne Light Detection and Ranging (lidar) has been a transformative technology in forest inventory 

and terrain mapping. Lidar enables detailed characterization of trees and vegetation, as well as the terrain 

surface underneath vegetation. When combined with ground plot data, lidar can be used to build models 

to accurately estimate forest inventory attributes of interest, such as basal area and volume. Single Photon 

Lidar (SPL) is a form of lidar technology that enables large area data collection at a reduced cost. SPL 

data is however markedly different from that of the discrete return, small footprint lidar that is commonly 

used for enhanced forest inventory (EFI) projects in Canada (hereafter, linear mode lidar or LML). The 

objectives of this project were to investigate and quantify the capacity of SPL data for estimating forest 

attributes and characterizing the terrain surface, as well as identifying any incremental advantages of SPL 

data for Ontario’s eFRI program. This study was conducted at the 10,000 ha Petawawa Research Forest 

(PRF) and adjacent 5,000 ha of lands of the Canadian Nuclear Laboratories (CNL) in southern Ontario, 

Canada. The PRF is the oldest research forest in Canada and combined with the CNL lands, represents a 

broad range of forest types and management histories. 

To assess the performance of the SPL data in area-based models of forest inventory attributes, we used 

co-located ground plots and SPL data to develop models for a suite of forest inventory attributes. We then 

applied those models wall-to-wall and quantified the accuracy and precision of the modeled estimates 

using independent, stand-level validation data from 27 stands. In addition, we compared the performance 

of the SPL-derived EFI against that of a 2012 EFI for PRF that was derived using LML. Overall, we 

found that area-based models generated using the 2018 SPL data had small relative bias (≤ 2%) and 

reasonable levels of error (RMSE ranging from 12–16%). Gross total volume for merchantable stems had 

an overall bias of 1 m
3
/ha ± 7 m

3
/ha (standard error), with a relative bias of 0% and a relative RMSE of 

15%. Estimates of merchantable stem volume had similar levels of bias (2 m
3
/ha ± 7 m

3
/ha), and a similar 

relative bias (1%) and RMSE (16%). Basal area of merchantable stems was underestimated by 2% (0.5 

m
2
/ha ± 0.7 m

2
/ha), with a relative RMSE of 14%. Estimates of quadratic mean diameter at breast height 

(DBH) had a relative bias of 1% (0.2 cm ± 0.6 cm) and a relative RMSE of 12%. As noted above, the 

study area represents a complex assemblage of forest types, silvicultural systems, and management 

histories, and this presents challenges for area-based models. We found that relative bias and RMSE 

varied markedly by forest type, with some forest types consistently overestimated (e.g. managed white 

pine), whereas other forest types were consistently underestimated (e.g. red pine plantations). The bias 

and error associated with the 2018 SPL area-based models were comparable to those generated using the 

2012 LML. On average, the relative RMSE was 5% larger for the estimates generated using the 2018 SPL 

data, whereas the relative bias was typically larger for the estimates generated using the 2012 LML data, 

but on average, differed by less than 1% overall. Based on these results, we consider the quality of the 

SPL area-based estimates to be similar to those generated using the 2012 LML data. 

To assess the accuracy of the SPL data for terrain characterization, we partnered with the Provincial 

Mapping Unit of the Ontario Ministry of Natural Resources and Forestry and the Canada Centre for 

Mapping and Earth Observation to design and conduct a Real Time Kinematic (RTK) GPS survey of a 

sample of checkpoints in different forest types within the PRF. RTK surveys accurately measure the 

elevation at a given location, and are used as reference data to assess the accuracy of elevations derived 

from other data sources, such as lidar. Following the Ontario Elevation Accuracy Guidelines, and 

targeting a 10 cm Vertical Accuracy Class, the checkpoint data acquired at PRF were used to assess the 

elevation accuracy of the 2018 SPL data, as well as the 2012 LML, and two additional leaf-off SPL 

acquisitions from 2019. Based on the results of the assessment, it was concluded that the four lidar 

datasets tested met the accuracy standards for Ontario Digital Geospatial Data for a 10 cm Vertical 
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Accuracy Class. Actual Non-vegetated Vertical Accuracy (NVA) was found to be +/- 19.6 cm at the 95
th
 

percentile. Actual Vegetated Vertical Accuracy (VVA) was found to be +/- 29.4 cm at the 95th percentile. 

For the majority of cover types, the leaf-on SPL data acquired in 2018 had slightly greater accuracies than 

the 2012 LML data, with the exception of the black spruce, mixedwood, and low vegetation categories. 

Although the 2018 SPL data had an aggregate nominal pulse density that was five times that of the 2012 

LML data (32.4 points/m
2
 for the 2018 SPL compared to 5.8 points/m

2 
for the 2012 LML), the average 

ground point density of the 2018 SPL was only twice that of the 2012 LML. In other words, the 2018 SPL 

data is much denser than the 2012 LML, but that density is disproportionately concentrated in the 

overlying vegetation and does not result in an analogous increase in ground point density. This is further 

demonstrated in the higher ground point densities associated with the 2019 leaf-off SPL acquisitions. The 

low density of ground returns associated with the 2018 SPL data also influenced the derived digital terrain 

model, resulting in artifacts in areas with dense vegetation cover and complex terrain. Not surprisingly, 

the leaf-off SPL acquisitions resulted in digital terrain models that were superior to those of both the 2012 

LML and 2018 SPL data. 

For the final objective of this project, we explored the use of SPL data for tree species classification and 

the identification of small trees below the main canopy. In examining the utility of the 2018 SPL for 

species classification at the individual tree level, we found that the SPL data provided results that were 

inferior to those generated with the 2012 LML data. Specific characteristics of the SPL data, namely the 

dominance of first returns, the lack of returns distributed through the full vertical profile of the canopy, 

and unknown qualities of the intensity data, resulted in lower species classification accuracies when 

compared to the 2012 LML data. Similarly, the lack of returns distributed through the full vertical profile 

of the canopy precluded the detection of small trees below the main canopy. In some cases, the presence 

of a secondary layer under the main canopy could be readily identified, but the capacity to identify a 

second layer depended on the density and configuration of the overstorey canopy, which varied by forest 

type. 

Overall, we conclude that the SPL data acquired to the specifications for the 2018 data used herein was 

suitable for both the area-based approach to estimating forest inventory attributes, and for characterizing 

terrain under a range of cover conditions, with acceptable levels of accuracy and overall quality for the 

derived digital terrain model. While leaf-off SPL acquisitions may be preferable for terrain 

characterization, the utility of these leaf-off acquisitions for area-based modelling was not investigated in 

this project. Lastly, the lack of returns in the 2018 SPL data through the full vertical profile of the canopy 

may limit these data for species identification at the individual tree level, and for the detection of 

secondary, small trees that exist below the main canopy, particularly if the main canopy is dense and/or 

has a uniform configuration 
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1. Project scope and objectives 

Airborne lidar (Light Detection and Ranging) has been a transformative technology, providing detailed 

characterizations of the earth's surface and three-dimensional measures of forest structure. The increase in 

spatial detail and precision afforded by lidar is critical for a broad range of natural resource management 

applications (Eitel et al. 2016), including forest inventory (Wulder et al. 2008, Hyyppä et al. 2012). In the 

last decade, the use of lidar for forest inventory has moved from the realm of research to operational 

implementation (Næsset et al. 2015), particularly for the area-based approach (White et al. 2013, 2016), 

with comprehensive demonstration of the efficacy of the technology in an Ontario context (Thomas et al. 

2006, Woods et al. 2011, Treitz et al. 2012, Penner et al. 2013, 2015). These lidar data were derived from 

discrete return or full waveform sensors, which are referred to collectively as “linear-mode lidar” 

(hereafter LML; Stoker et al. 2016). Single photon lidar (SPL) represents a potential significant 

technological advance towards the rapid and cost-effective characterization of forest structure and terrain 

underneath canopy over large areas. At the time this project was proposed, the only large-area application 

of SPL (1700 km2) reported in the literature compared metrics of forest structure and terrain, but did not 

apply an area-based approach or model any forest inventory attributes (Swatantran et al. 2016). 

The objectives of this project were to address several gaps in current scientific and operational knowledge 

regarding the application of SPL for forest inventory. Specifically, the objectives of this project were as 

follows: 

1. To quantify the comparative performance of SPL in an area-based approach to forest inventory 

attributes; 

2. To quantify the comparative performance of SPL in characterizing terrain under varying forest 

types and canopy densities; 

3. To identify and explore any incremental advantages or innovations for the eFRI program 

resulting from unique SPL data characteristics, particularly data density (e.g. to support 

individual tree approaches and the improved characterization of canopy vertical structure for 

applications such as habitat modelling). 

The primary target audience for this work is the forest inventory community in Ontario and Canada. 

Forest practitioners want robust and transparent benchmarking of new technologies to be demonstrated 

and documented in an accessible manner. Ontario's Sustainable Forest Licence (SFL) managers in the 

Great Lakes and Boreal Forest regions require higher resolution inventory information with known 

accuracies to inform both their strategic and operational planning needs. A secondary target audience is 

the scientific community. Given the relatively recent commercial release of SPL technology, the 

performance of this technology for forest inventory and terrain characterization needs to quantified and 

documented and that was the ultimate goal of this project. 

2. Deliverables 

In addition to this report documenting the various investigations and analyses supporting the objectives of 

this project, technology transfer was an important project deliverable and included online lectures and in-

person workshop presentations. All technology transfer activities associated with this project are 

summarized in Appendix A, including links to recorded online lectures and presentation materials that are 

available for download. Several supplementary reports were generated to address the specific information 

needs and objective of this project. Details on those reports, including means to access them, are provided 

in Appendices to this report.  
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3. Study Area 

The Petawawa Research Forest (PRF) was established in 1918 and is the oldest, continuously operated 

research forest in Canada (Place 2002). Located approximately 200 km northwest of Ottawa, the PRF 

extends over 10,000 ha of forested land. An additional 5000 ha of adjacent land managed by the Canadian 

Nuclear Laboratory (CNL) was also included in this study (Figure 1). The forests of both the PRF and 

CNL sites are dominated by mature Great Lakes–St. Lawrence mixedwood stands (70% by area) with 

remaining stands being primarily hardwood (22%) and conifer (8%) dominated. Approximately 85% of 

the forest land within the PRF is considered productive and includes several long-term conifer plantation 

studies that are unique to Canadian forestry. With its combination of experimental plots, plantations, and 

non-research areas, the PRF represents a heterogeneous mixture of forest conditions.  

The PRF and CNL forests are located on the southern edge of the Precambrian Shield with bedrock of 

granites and gneisses. The topography has been impacted by glaciation and post-glacial outwashing. The 

area contains extensive sand plains, imposing hills with shallow sandy soils, bedrock outcrops, and areas 

of gently rolling hills with moderately deep loamy sand containing numerous boulders. Elevation across 

the study area ranges from approximately 100 m to more than 310 m above sea level. Mean annual 

precipitation is approximately 800 mm with 230 mm in the form of snow. The mean annual temperature 

is 4.4°C. The minimum frost-free period is about 100 days and the average growing season is 136 days. 

The PRF is also a designated remote sensing supersite (White et al. 2019)
1
 and has been the focus of 

numerous data acquisition missions over the years, including airborne Light Detection and Ranging 

(lidar), as well as other airborne and satellite optical and radar data acquisitions. Likewise the PRF also 

has numerous ground plot data holdings, including permanent sample plots. The availability of reference 

data and the broad range of forest types and management regimes within the PRF make it an ideal 

location to benchmark new technologies such as SPL. 

 

4. Objective 1: Quantify the performance of SPL in an area-based approach to 

generating an eFRI 

4.1 Ground plot calibration data 

Accurately measured ground plot data that is representative of the forest area of interest is critical for the 

implementation of the area-based approach (White et al. 2013). A total of 269 circular fixed-area plots of 

a nested (i.e. large and small tree plots; Figure 2) design were used for this project. A total of 249 plots 

were remeasured/established within the PRF in the summer of 2018, and an additional 20 plots were 

established within the CNL property in the summer of 2019. Ground plots within PRF were located to 

cover the full range of species and stand development. The 20 additional plots at CNL were acquired to 

capture the unique forest conditions found therein. The majority of plots measured within the PRF were 

initially established between 2012 and 2014 in support of a 2012 LML acquisition and subsequent 

development of an EFI. Locations for these plots were established following a structurally guided 

sampling approach, as detailed in White et al. (2013). As a result, an unbalanced sampling frame resulted 

when comparing plots by forest type. Additional plots were added to the 2013/2014 plot network to 

increase the number of observations and ensure representation of the main forest types within the PRF 

(Table 1; Appendix B).  

                                                      
1https://opendata.nfis.org/mapserver/PRF.html 

https://opendata.nfis.org/mapserver/PRF.html
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Figure 1. Map of established calibration plots (n = 269) within the Petawawa Research Forest (PRF) and Canadian 

Nuclear Laboratories (CNL) lands. 

 

Figure 2. Configuration of small tree plot (STP) nested within large tree plot (LTP) 
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Live and dead trees with a diameter at breast height (DBH) ≥ 9.1 cm were measured on ground plots with 

an area of 625 m
2
 (14.1 m radius; large tree plots). Trees with 2.5 < DBH < 9.1 cm were measured on 50 

m
2
 (3.99 m radius) ground plots (small tree plots), centered on the larger plot (Figure 2). DBH was 

measured on all trees, whereas only a subsample of trees was measured for height. The position of the 

plot centroid was recorded using a TopCon™ GPS unit, with a minimum 60 minute static collection for 

each plot centre. These positional data were later corrected using the NRCAN Precise Point 

Positioning tool to achieve sub-metre positioning. Ground plot photos were also acquired for each plot 

using the Ricoh Theta V 360 camera and following the protocol outlined in Woods et al. (2018; Appendix 

C). Attributes recorded within the large tree plots include tree status (live, dead, fallen down, harvested), 

species (using standard OMNRF numerical codes), origin (natural, planted, coppice, layering), DBH, 

crown class (codominant, dominant, emergent, intermediate, overtopped/suppressed, anomaly) and for 

dead trees, the decay class (for details refer to Woods et al. 2018; Appendix C). A height sample was 

measured at each plot throughout the range of diameters and species, with the six largest trees of the 

dominant plot species measured at each plot. Height measurements were made using a Vertex 

hypsometer. 

Plot measurements were then compiled to provide a suite of plot-level attributes. Height-DBH curves 

were fit at the plot level, all species combined, and used to estimate heights of the trees without measured 

heights. The average dominant/codominant height was calculated as the average height of the live 

dominant/codominant/emergent trees with measured heights. Only the trees on the large tree plot had 

crown status recorded. The Sharma (2016) equation was used: 

                       
   

          
 
                               (Eq. 1) 

Where: 

Ht is total tree height (m) 

DBH is Diameter at breast height (cm) 

BA is stand basal area (m
2
/ha) 

TPH is stand density (trees/ha) 

SHt is stand height (dominant/codominant height of the plot) 

α, β. γ, δ and ϕ are parameters to be estimated. 

 

Stem volumes were estimated using the Zakrzewski & Penner (2013) and Sharma & Parton (2009) 

models.  Biomass was estimated using the equations of Lambert et al (2005) using height and DBH. The 

ground plots covered a range of forest types, and the mean values and range (in brackets) for each of these 

attributes are provided in Table 1. 
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Table 1. Summary of calibration plot data, which cover a range of forest conditions within PRF. Attributes are for 

all stems. N = number of plots for each forest type. 

Forest Type N 
Gross total 

volume (m
3
/ha) 

Basal area 
(m

2
/ha) 

Trees/ha 

Dominant/ 
co-

dominant 
height (m) 

Quadratic 
mean DBH 

(cm) 

Black Spruce 14 
152.5 

(37.8 – 249.1) 
21 

(10.6 – 34.0) 
1738 

(592 - 2848) 
16.3 

(9.7 - 19.2) 
13.2 

(6.9 - 20.5) 

Jack Pine 10 
179.2 

(114.4 – 261.1) 
20.4 

(15.8 - 26.3) 
1377 

(480 - 2976) 
19.8 

(16.3 - 22.9) 
15.1 

(9.7 - 21.5) 

Lowland Conifer 4 
232.6 

(79.2 – 369.9) 
33.2 

(14 - 46.7) 
2902 

(1312 - 6224) 
16.9 

(12.6 - 20.4) 
13.3 

(9.2 - 17.4) 

Mixedwood (Deciduous) 13 
205.5 

(35.3 – 350.1) 
25.2 

(9.2 - 38.2) 
2171 

(552 - 5656) 
19.2 

(11.8 – 24.8) 
13.6 

(4.6 – 21.5) 

Mixedwood (Conifer) 13 
160.6 

(58.1- 310.4) 
22.5 

(8.5 – 39.3) 
2014 

(272 - 5512) 
19.7 

(13.8 - 27) 
14.3 

(7.2 – 20.0) 

Mid-tolerant Hardwood 28 
172.7 

( 2.8 – 299.4) 
20.6 

(0.5 – 32.0) 
1726 

(16 - 6280) 
16.7 

(11.1 – 21.2) 
16.1 

(4.9 – 34.3) 

Intolerant Hardwood 15 
401.3 

(142.7 – 802.1) 
36.6 

(15.8 - 56.9) 
1908 

(392 - 4200) 
25.3 

(14.8 - 33.1) 
17.2 

(8.1 - 23.7) 

Red Pine Plantation 23 
430.3 

(116.5 – 999.5) 
40.5 

(24.4 - 70.7) 
1697 

(408 - 3312) 
22.5 

(9.2 - 33.9) 
19.0 

(10.5 - 28.6) 

White Pine Managed 14 
210.0 

(31.0 – 347.4) 
27.1 

(5.7 - 39.2) 
1643 

(48 - 2824) 
18 

(11.5 - 24.5) 
16.3 

(5.7 - 38.8) 

White Pine Plantation 7 
195.3 

(13.8 – 434.7) 
23.5 

(6.7 - 44.4) 
1239 

(256 - 2456) 
19.8 

(5.6 - 37.2) 
17.4 

(8.9 - 34.3) 

White Pine Natural 93 
368.5 

(19.9 – 949.0) 
33.8 

(2.9 - 68.4) 
2082 

(96 - 15392) 
26 

(8.2 – 43.0) 
17.9 

(6.0 - 39.9) 

Tolerant Hardwood 23 
272.7 

(45.2 – 493.0) 
29.0 

(7.8 - 44) 
1507 

(360 - 4400) 
23.9 

(12.3 - 32.2) 
16.9 

(8.3 - 30.4) 

Spruce Plantation 12 
235.8 

(110.2 – 457.8) 
29.8 

(12.3 - 52.5) 
1705 

(424 - 2968) 
19 

(13.8 - 26.5) 
16.1 

(10.7 - 26.4) 

All 269 
291.99 

(2.8 – 999.5) 
30.1 

(0.5 - 70.7) 
1885 

(16 - 15392) 
22.2 

(5.6 – 43.0) 
16.6 

(4.6 - 39.9) 

 

4.2 Stand-level validation data 

Ten forest-types were identified for validation (Table 2; Appendix B) using a circa 2000 polygon-based 

forest inventory provided by PRF staff. Three mature stands of each forest type were selected for a total 

of 27 validation stands (Figure 3). A 50 m x 50 m sampling grid was superimposed over each of the 

stands and sampling station locations were identified (Figure 4). A maximum stand size of 15 ha was 

selected to maintain approximately 50 stations per stand. In many cases, far fewer stations were identified 

within the selected stands (due to stand size and shape). However, for some forest-types (i.e. tolerant 

hardwood, red oak, mixedwood), original photo-interpreted stand boundaries were modified as possible to 

enable 50 stations to be located within the stand. Stations along the 50 m x 50 m grid were adjusted as 

necessary to maintain a minimum distance of 20 m from clearly marked trails and roads. Each sampled 

stand was also buffered-inside by 12.5 m to ensure that sampling would be contained to the target stand 

condition (Figure 3). A recreational grade GPS unit was used to navigate to the identified stand-station 

waypoint (Figure 4), with a target accuracy of within 5 m the target station location. At each station, a 

BAF-2 prism was used to measure each tree determined to be “in” (i.e. DBH > 9.0 cm). Each “in” tree 

was recorded for species, DBH, and quality, as detailed in Appendix C. In addition, the tree with the 
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largest DBH for each prism sweep was measured for height. Crown class was not recorded. Borderline 

trees were checked with a limiting distance table.  

After the cruise data was collected, a quality assurance process was used to examine each of the sampling 

stations relative to the stand boundary. As noted, stand boundaries were taken from a circa 2000 forest 

inventory, and when overlaid on the 2018 imagery, it was evident that the stand boundaries required some 

modification and update. Validation stand boundaries were manually edited to ensure roads were not 

included within the stand. Then, any station that was found within 12.5 m of the revised stand boundary 

was excluded. After the quality assurance process, a total of 1001 BAF-2 prism plots were used to derive 

validation summary information on 27 stands (Table 2). 

Table 2. Stand-level validation data. Appendix B provides a cross-walk between forest types used in the calibration 

and validation data. A list of common species codes are also provided in Appendix B. N indicates the final number 

of stations within the stand after the quality assurance process was applied. 

StandID Forest Type 
Species Composition 

(Species code and proportion within the stand) 
N 

28 White Pine Managed Pw74Or10Pr8Mr4Po2Sb1Sw1Bf0Bw0 48 

45 White Pine Natural Pw42Or31Mr8Pr6Po5Bf3Ms2Sw2Sb1La0Iw0Bd0Be0Pj0 60 

73 White Pine Natural Pr41Pw28Bf15Sw5Po4Or3Bw2Mr2Iw0 30 

74 Black Spruce Sb37Pw22Ce12Bf9Mr5Pr5La4Or2Sw2Ab1Bw1By0He0Po0 22 

77 Mixedwood Or22Mr18Bf16Po14Pw7Sw6Bw6Bd3Ms2Ab2Iw2Pr2Cb0Sb0 48 

85 White Pine Natural Pw30Ce25Pr17Ab7Sw5Mr4Bf4Po3Bw2Be1Or1Pj1By0Sb0 24 

92 Oak Or45Po27Pw15Mr4Ms4Sw2Bf1Bw1Iw1Pr0Be0 55 

161 Poplar Po31Bf18Mr18Pw14Sw6Bw4Pr3Sb2By1Ce1La1Ms1Ab0Or0 24 

186 Red Pine Plantation Pr94Pw6 16 

191 Jack Pine Pj95Pw3Mr1Po1Bw0 20 

192 Red Pine Plantation Pr84Pw14Pj2 12 

194 Red Pine Plantation Pr61Pw19Pj9Mr4Po3Bf3Bw1Or0Sw0 25 

198 Poplar Po71Pj18Mr10Pr1 11 

200 Jack Pine Pj82Po14Pw2Bw1Pr1Mr0 36 

442 White Pine Managed Pw71Pr16Po5Sw4Mr1Or1Be1Bw1 34 

455 Red Pine Plantation Pr99Pw1Bw0 12 

465 White Pine Managed Pw73Pr22Be2By1Or1Po1Bf0Bw0He0Mr0Sw0 26 

478 Black Spruce Sb30Pw21Bf15Mr14Sw11Po6Bw1By1Ab1 21 

518 Tolerant Hardwood Mr26Ms14Bw12Bf12By9Iw7Pw4Bd4Sw4Or3Po2Ab1Be1Ea1 43 

536 Mixedwood Mr28Bf22Sw12Pw9Ms7Bw6Ab5Po3Bd3Pr2By1Iw1Or1Be0 50 

547 Oak Or40Pw39Mr4Bf4Pr3Sw3Ms2Bw1Iw1Po1He1La1Ab0Sb0 55 

548 Mixedwood Mr29Bf20Po18Sw13Pw10Bw4Or3Pr2Ab1Ms0Cb0La0Pb0 52 

572 Tolerant Hardwood Ms26Bf24Or14Mr10Sw10Pw7Iw3Bd2By2Be1Bw1Ab0Po0Pr0 61 

588 White Pine Natural Pw49Bf12Po11Mr10Pr8Sw7Bw1Sb1La1Ms0Or0Pj0 46 

590 Mixedwood Bf29Mr26Sw11Po7Or7Bw7Pw7Pr2Ms2Iw1Be1Ab0Bd0He0 60 

619 Tolerant Hardwood Pw21Ms15Mr11Bf10He9Or8Bw7Sw6Po5Bd4Pr1Ce1Be1Iw1 63 

978 Lowland Conifer Ce42Sb32La9Bf7Mr5Pw2Ab2By1Bw0Sw0 47 
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Figure 3. Map of selected validation stands at Petawawa Research Forest. 

 

Figure 4. Example of a 50 m grid of stations super-imposed on validation stand 518 (tolerant hardwood). An 

internal buffer of 12.5 m was used to remove stations from the stand edge. 

The following attributes were validated at the stand level: merchantable basal area, gross total volume for 

merchantable stems, merchantable stem volume, dominant/codominant height, quadratic mean diameter, 

top height, and Lorey’s height. Details on the estimation of dominant/codominant height, top height, and 

Lorey’s height from the cruise data are provided in Penner and Woods (2020; Appendix D). Validation 

stand summary statistics are provided in Table 3. 
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Table 3. Summary of stand-level validation data for the PRF. The mean value is followed by the range (in 

parentheses). 

Forest Type 
Number 

of 
stands 

Area (ha) 

Average 
number 

of 
stations 

per 
stand 

Top height 
(m) 

Gross total 
volume, 

merchantable 
stems (m

3
/ha) 

TVOL_merch 

Merchantable 
stem volume 

(m
3
/ha) 

MVOL 

Basal area, 
merchantable 

stems 
(m

2
/ha) 

BA_merch 

Quadratic 
mean 

diameter 
(cm) 

DQ_merch 

Black Spruce 2 
7  

(7–8) 
22  

(21–22) 
19.6 

(19.0–20.1) 
185.3 

(178.3–192.3) 
152.0  

(145.3–158.8) 
22.4 

(22.3–22.5) 
19.7 

(18.9–20.4) 

Jack Pine 2 
9  

(6–12) 
28  

(20–36) 
20.3 

(19.6–21.0) 
206 

 (197.9–213.6) 
183.0  

(178.0–188.0) 
22.3 

(21.3–23.2) 
19.4 

(18.5–20.2) 

Lowland Conifer 1 
15 

 (15–15) 
47  

(47–47) 
15.5 

(15.5–15.5) 
150.1 

 (150.1–150.1) 
124.6  

(124.6–124.6) 
23.4 

(23.4–23.4) 
19.2 

(19.2–19.2) 

Mixedwood 4 
18 

 (16–19) 
53  

(48–60) 
19.9 

(18.8–20.5) 
220.9 

 (204.6–229.3) 
168.0  

(151.3–176.3) 
26.8 

(24.0–28.6) 
20.3 

(19.3–21.0) 

Oak 2 
19 

 (19–20) 
55  

(55–55) 
21.5 

(21.2–21.9) 
278.6 

 (246.7–310.4) 
228.6  

(201.5–255.7) 
29.6 

(27.4–31.8) 
24.7 

(24.3–25.0) 

Poplar 2 
7 

 (4–9) 
18  

(11–24) 
23.1 

(22.5–23.6) 
254.5 

 (222.7–286.4) 
209.7  

(187.5–231.9) 
24.7 

(21.9–27.5) 
20.5 

(19.0–21.9) 

Red Pine 
Plantation 

4 
5 

 (4–9) 
16  

(12–25) 
22.9 

(20.5–25.5) 
330.1 

 (230.6–429.3) 
294.6  

(216.4–395.6) 
31.6 

(21.4–38.5) 
26.3 

(21.2–32.6) 

Managed White 
Pine 

3 
12 

 (9–16) 
36  

(26–48) 
29.3 

(25.8–33.8) 
173.5 

 (102.6–212.5) 
161.0  

(94.6–201.0) 
15.0 

(9.0–19.7) 
35.7 

(31.9–41.4) 

Natural White 
Pine 

4 
13 

 (10–19) 
40  

(24–60) 
23.5 

(21.9–25.2) 
308.2 

 (292.0–315.6) 
266.5  

(248.8–285.1) 
31.5 

(30.1–32.9) 
24.2 

(23.2–25.5) 

Tolerant 
Hardwood 

3 
18 

 (14–21) 
56  

(43–63) 
20.7 

(20.2–21.7) 
232.8 

 (206.3–248.6) 
177.6  

(148.5–195.1) 
27.5 

(25.1–29.7) 
21.0 

(20.4–21.5) 

All 27 
13  

(4–21) 
37  

(11–63) 
22.2 

(15.5–33.8) 
246.5 

 (102.6–429.3) 
207.5 

 (94.6–395.9) 
26.2 

(9.0–38.5) 
23.7 

(18.5–41.4) 
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4.3 Single-photon lidar (SPL) data 

Leaf-on single photon lidar data were acquired for the Petawawa Research Forest and the adjoining 

Canadian Nuclear Laboratory property on July 2, 2018. The Leica SPL100 sensor was flown aboard a 

Piper-PA-31-350 at an average altitude of 3800 m, with the acquisition specifications detailed in Table 4.  

Table 4. SPL data acquisition parameters. 

Parameter 2018 SPL 

Sensor Leica SPL100 

Laser wavelength (nm) 532 

Laser beam divergence (mrad) 0.08 

Average flying altitude (m AGL) 3800 

Average flying speed (knots) <180 

Pulse repetition rate (pulses/sec) 60,000 

Frequency 21 Hz 

Scan Angle (degrees) ±15 

Field of View (degrees) 30 

Swath Width (m) 2000 

Aggregate nominal point density 
(first returns only) 

32.4 

 

To support area-based modelling, lidar metrics were calculated from the SPL point clouds (Table 5). 

These lidar metrics are used as predictors to develop models for forest inventory attributes of interest 

following the approach outlines in White et al. (2013, 2017). SPL lidar metrics were generated with 

LAStools (Isenburg, 2020) using the full SPL point cloud (all returns), without the application of a height 

threshold. 
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Table 5. SPL predictors used for area-based modelling of forest inventory attributes (n = 65). 

Predictor Threshold Description 

a_std_95 0m STD_Trimmed @95% 

a_ske_95 0m Skewness_Trimmed @95% 

a_kur_95 0m Kurtosis_Trimmed @95% 

a_avg 0m avgHt 

a_qav 0m average_Square_Ht 

a_p01 0m 1st Percentile Height 

a_p05 0m 5th Percentile Height 

a_p10 0m 10th Percentile Height 

a_p20 0m 20th Percentile Height 

 ⁞     

a_p90 0m 90th Percentile Height 

a_p95 0m 95th Percentile Height 

a_p99 0m 99th Percentile Height 

a_d0_2 0m Number of returns from 0-2m/All returns 

a_d2_4 0m Number of returns from 2-4m/All returns 

 ⁞     

a_d44_46 0m Number of returns from 44-46m/All returns 

a_d46_48 0m Number of returns from 46-48m/All returns 

a_b10 0m decile 10% of points between 0 and 99% height 

a_b20 0m decile 20% of points between 0 and 99% height 

 ⁞     

a_b80 0m decile 80% of points between 0 and 99% height 

a_b90 0m decile 90% of points between 0 and 99% height 

a_dns_2m 2m Density_Percentage of All Returns 2m-49m/All Returns 

a_dns_4m 4m Density_Percentage of All Returns 4m-49m/All Returns 

a_dns_5m 5m Density_Percentage of All Returns 5m-49m/All Returns 

a_dns_6m 6m Density_Percentage of All Returns 6m-49m/All Returns 

a_dns_10m 10m Density_Percentage of All Returns 10m-49m/All Returns 

a_dns_12m 12m Density_Percentage of All Returns 12m-49m/All Returns 

a_dns_14m 14m Density_Percentage of All Returns 14m-49m/All Returns 

a_dns_15m 15m Density_Percentage of All Returns 15m-49m/All Returns 

a_dns_16m 16m Density_Percentage of All Returns 16m-49m/All Returns 

a_dns_18m 18m Density_Percentage of All Returns 18m-49m/All Returns 

a_dns_20m 20m Density_Percentage of All Returns 20m-49m/All Returns 

a_dns_25m 25m Density_Percentage of All Returns 25m-49m/All Returns 

a_vci_1mbin 0m Vertical Complexity Index with a 1 m bin 

a_vci_0.5bin 0m Vertical Complexity Index with a 0.5 m bin 

 

4.4 Area-based modelling approach 

Attributes were modelled using random forests (Breiman, 2001), as implemented in the R package 

randomForest (Liaw and Weiner, 2002). No stratification was used for model development. Ground 

attributes that were predicted directly are defined in Table 6. Merchantable attributes were only predicted 

when p99 > 5 m. The ground attributes that were not predicted directly, but rather derived from other 

predicted attributes (Table 6), are defined in Table 7. Area-based models were developed using the full set 

of lidar metrics as predictors (Table 5). The mtry parameter in randomForest, which determines the 

number of predictors used for splitting at each tree node, was set to p/3, where p is the total number of 

predictors used. 2018 area-based models for merchantable basal area, merchantable stem volume, and 

gross total volume (merchantable stems), used predictions of volume-to-basal area ratios (VBAR) to 

constrain the final predictions to ensure they were logical (e.g. gross total volume for merchantable stems 
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is always equal or greater than predictions of merchantable stem volume). VBAR ratios (VBAR_TVOL 

ratio, VBAR_MVOL_ratio, and BA_merch_ratio) were calculated as indicated in Table 6. Using these 

ratios, TVOL_merch, MVOL, and BA_merch were calculated as indicated in Table 7. Management size 

classes for basal area, volume, and biomass were defined by the DBH class range (Table 8). The attributes 

for each size class were calculated accordingly (Table 9 and Table 10). 

 

Table 6. Ground plot attributes directly predicted in area-based models. Note that merchantable attributes are only 

predicted when the 99
th

 percentile of lidar point cloud heights (p99) is greater than 5m. 

Attribute Definition Size 

TOPHT top height (average height of thickest 6 trees/plot) (m) All 

HL_all Lorey’s height (average height weighted by BA) (m) All 

CD_ht average height of dominant/codominant trees (m) All 

DQ_all quadratic mean DBH, all stems (cm) All 

BA_all basal area, all stems (m
2
/ha) All 

TVOL_all gross total volume, all stems (m
3
/ha) All 

BIO_all aboveground biomass, all stems (kg/ha) All 

DQ_merch quadratic mean DBH, merchantable stems (cm) DBH ≥ 9.1 cm 

VBAR_TVOL_ratio VBAR_TVOL_merch/VBAR_TVOL DBH ≥ 9.1 cm 

VBAR_MVOL_ratio VBAR_MVOL/VBAR_TVOL_merch DBH ≥ 9.1 cm 

BA_merch_ratio BA_merch/BA_all DBH ≥ 9.1 cm 

HL_merch_ratio HL_merch/HL_all DBH ≥ 9.1 cm 

BIO_merch_ratio BIO_merch/ BIO _all DBH ≥ 9.1 cm 

 

Table 7. Ground plot attributes that are not predicted directly from SPL data, but rather derived from other 

attributes (i.e. those listed in Table 6). 

 Attribute Definition Size Calculation 

TPH_all stems/ha, all stems All BA_all/ (DQ_all*DQ_all*0.00007854) 

HL_merch Lorey’s height, merchantable stems (m) DBH ≥ 9.1 cm HL_all*HL_merch_ratio 

BA_merch basal area, merchantable stems (m
2
/ha) DBH ≥ 9.1 cm BA_all* BA_merch_ratio 

TPH_merch stems/ha, merchantable stems DBH ≥ 9.1 cm 
BA_merch/ 
(DQ_merch*DQ_merch*0.00007854) 

TVOL_merch 
gross total volume, merchantable stems 
(m

3
/ha) 

DBH ≥ 9.1 cm TVOL_all*VBAR_TVOL_ratio*BA_merch_ratio 

BIO_merch 
aboveground biomass, merchantable 
stems (kg/ha) 

DBH ≥ 9.1 cm BIO_all*BIO_merch_ratio 

MVOL merchantable stem volume (m
3
/ha) DBH ≥ 9.1 cm TVOL_merch*VBAR_MVOL_ratio 
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Table 8. Management size class as defined by DBH range. 

Size Size class DBH range (cm) 

Large Large sawlog DBH > 49 

Medium Medium sawlog 37 < DBH ≤ 49 

Small Small sawlog 25 < DBH ≤ 37 

Poles Polewood 9 < DBH ≤ 25 

 
Table 9. Predicted size class attributes and their mode of calculation. 

 Attribute Definition Size Calculation 

BALarge_frac Fraction of BA in large sawlogs large BALarge/BA_merch 

BAMedium_frac Fraction of BA in medium sawlogs medium BAMedium/(BA_merch – BALarge) 

BASmall_frac Fraction of BA in small sawlogs small 
BASmall/(BA_merch – BALarge – 
BAMedium) 

MVOL_Large_frac 
Fraction of merchantable stem volume in 
large sawlogs 

large MVOL_Large/MVOL 

MVOL_Medium_frac 
Fraction of merchantable stem volume in 
medium sawlogs 

medium MVOL_Medium/(MVOL – MVOL_Large) 

MVOL_Small_frac 
Fraction of merchantable stem volume in 
small sawlogs 

small 
MVOL_Small/(MVOL – MVOL_Large –
MVOL_Medium) 

TVOL_Large_frac 
Fraction of gross total volume of 
merchantable stems in large sawlogs 

large TVOL_Large /TVOL_merch 

TVOL_Medium_frac 
Fraction of gross total volume of 
merchantable stems in medium sawlogs 

medium 
TVOL_Medium/(TVOL_merch – 
TVOL_Large) 

TVOL_Small_frac 
Fraction of gross total volume of 
merchantable stems in small sawlogs 

small 
TVOL_Small/(TVOL_merch – TVOL_Large – 
TVOL_Medium) 

BIOLarge_frac 
Fraction of aboveground biomass for 
merchantable stems in large sawlogs 

large BIOLarge/BIO_merch 

BIOMedium_frac 
Fraction of aboveground biomass for 
merchantable stems in medium sawlogs 

medium BIOMedium/(BIO_merch – BIOLarge) 

BIOSmall_frac 
Fraction of aboveground biomass for 
merchantable stems in small sawlogs 

small 
BIOSmall/ (BIO_merch – BIOLarge – 
BIOMedium) 

DQ_Poles 
Quadratic mean DBH of merchantable 
stems for poles 

poles 
 

DQ_Large 
Quadratic mean DBH of merchantable 
stems for large sawlogs 

large 
 

DQ_Medium 
Quadratic mean DBH of merchantable 
stems for medium sawlogs 

medium 
 

DQ_Small 
Quadratic mean DBH of merchantable 
stems for small sawlogs 

small 
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Table 10. Mode of calculation for size class attributes for BA and TPH. Calculations for MVOL, TVOL, and 

biomass (Table 9) are similar. 

 Attribute Definition Size Calculation 

BA_Large basal area large BA_merch * BALarge_frac 

BA_Medium basal area medium (BA_merch – BALarge) * BAMedium_frac 

BA_Small basal area small (BA_merch – BALarge – BAMedium) * BASmal _frac 

BA_Poles basal area poles BA_merch - BALarge - BAMedium - BASmall 

TPH_Poles stems/ha poles BAPoles/(DQ_Poles DQ_Poles * 0.00007854) 

TPH_Large stems/ha large BALarge/(DQ_Large * DQ_Large * 0.00007854) 

TPH_Medium stems/ha medium BAMedium/(DQ_Medium * DQ_Medium * 0.00007854) 

TPH_Small stems/ha small BASmall/(DQ_Small * DQ_Small * 0.00007854) 

 

4.5 Measures of model performance 

Measures of model performance included bias, the standard error (SE) of the bias, and the root mean 

squared error. Relative bias and RMSE were also calculated, using the mean of the observed values for 

each forest type. 

Bias is the difference between the observed      and predicted       attribute and the average bias was 

calculated as follows: 

      
             

 
 

      

 
                                           (Eq. 2) 

The SE of the bias is a measure of how consistent the bias is. When the bias is reported SE of the bias is 

also reported. The SE of the bias was calculated as follows:   

        

                    

 
 

 
 

     
  
                                                     (Eq. 3) 

The root mean squared error (RMSE) is another measure of the goodness of the predictions and was 

calculated as follows:  

                   
 

 
                                                                           (Eq. 4) 

 

The relative bias and RMSE were calculated relative to the mean of the observed values as follows: 

       
           

          
                                                                      (Eq. 5) 

 

       
     

          
                                                                    (Eq. 6) 
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4.6 Results 

4.6.1 Calibration data results 

The predict function in the randomForest R package was used to obtain out-of-bag (OOB) errors. The 

OOB is a form of internal cross validation generated using hold-out sets of the calibration data (White et 

al. 2017). While OOB error provides an indication of model performance for the calibration plots, 

independent validation data at the management unit level (i.e. the stand) is always preferable for an area-

based inventory (see Section 4.6.2). Results for dominant/codominant height (Table 11) indicate that 

although overall estimation bias was minimal, model performance varied by forest type, with mixed 

deciduous stands having the largest relative bias (-6%), and white pine-red pine stands and white pine 

plantations having the largest relative RMSE (19% and 15%, respectively) 

 

Table 11. Calibration results for dominant/codominant height. 

Forest Type N 
Observed 

(m) 
Predicted 

(m) 
Bias + SE 

(m) 
Bias% 

RMSE 
(m) 

RMSE% 

Black Spruce 14 16.3 16.6 -0.3 ± 0.2 -2% 0.8 5% 

Jack Pine 10 19.8 19.2 0.6 ± 0.3 3% 1.2 6% 

Lowland Conifer 4 16.9 17.2 -0.3 ± 0.4 -2% 0.7 4% 

Mixedwood (Deciduous) 13 16.7 17.7 -0.9 ± 0.7 -6% 2.7 16% 

Mixedwood (Conifer) 13 19.7 19.4 0.3 ± 0.5 2% 1.7 9% 

Mid-tolerant Hardwood 28 19.2 19.5 -0.4 ± 0.5 -2% 2.6 14% 

Intolerant Hardwood 15 25.3 24.4 0.8 ± 0.6 3% 2.5 10% 

Red Pine Plantation 23 22.5 22.3 0.2 ± 0.2 1% 0.9 4% 

White Pine Plantation 7 19.8 19.1 0.7 ± 1.2 4% 2.9 15% 

White Pine Managed 14 18 18.2 -0.2 ± 0.6 -1% 2.1 12% 

White Pine Natural 93 26 25.7 0.3 ± 0.5 1% 5 19% 

Tolerant Hardwood 23 23.9 24.1 -0.2 ± 0.4 -1% 1.9 8% 

Spruce Plantation 12 19 18.3 0.7 ± 0.4 4% 1.5 8% 

All 269 22.2 22.1 0.1 ± 0.2 0% 3.3 15% 

 

Overall, bias was minimal for estimates of gross total volume of merchantable stems, but varied by forest 

type, ranging from -43% for mixed conifer to 22% for red pine plantation (Table 12). Relative RMSE 

likewise varied, ranging from a low of 16% for intolerant hardwoods to a high of 49% for mixed conifers. 

Note that there was one calibration plot in a white pine plantation where p99 < 5 m and no merchantable 

attributes could be predicted. 
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Table 12. Calibration results for gross total volume (merchantable stems). 

Forest type N 
Observed 

(m
3
/ha) 

Predicted 
(m

3
/ha) 

Bias + SE 
(m

2
/ha) 

Bias% 
RMSE 

(m
3
/ha) 

RMSE% 

Black Spruce 14 149 129 20 ± 7 13% 32 22% 

Jack Pine 10 177 187 -9 ± 10 -5% 31 18% 

Lowland Conifer 4 219 183 36 ± 29 16% 62 28% 

Mixedwood (Deciduous) 13 152 170 -18 ± 10 -12% 39 26% 

Mixedwood (Conifer) 13 166 237 -71 ± 12 -43% 81 49% 

Mid-tolerant Hardwood 28 196 212 -16 ± 8 -8% 44 22% 

Intolerant Hardwood 15 391 406 -15 ± 16 -4% 63 16% 

Red Pine Plantation 23 426 332 94 ± 24 22% 145 34% 

White Pine Plantation 6 222 231 -10 ± 16 -4% 38 17% 

White Pine Managed 14 203 212 -9 ± 15 -4% 54 26% 

White Pine Natural 93 360 350 10 ± 11 3% 102 28% 

Tolerant Hardwood 23 266 335 -69 ± 16 -26% 101 38% 

Spruce Plantation 12 230 196 34 ± 18 15% 67 29% 

All 268 286 285 1 ± 5 0% 87 31% 

 

Merchantable basal area was overestimated by approximately 1% overall (Table 13), but was greatest for 

mixed conifer stands (-38%). Relative RMSE ranged from 17% for intolerant hardwoods to 42% for mid-

tolerant hardwoods. 

Table 13. Calibration results for merchantable basal area. 

Forest Type N 
Observed 

(m
2
/ha) 

Predicted 
(m

2
/ha) 

Bias + SE 
(m

2
/ha) 

Bias% 
RMSE 

(m
2
/ha) 

RMSE% 

Black Spruce 14 19.3 17 2.3 ± 1 12% 4.3 22% 

Jack Pine 10 19.6 21.7 -2.2 ± 1.2 -11% 4.2 21% 

Lowland Conifer 4 29 22.5 6.5 ± 4.1 23% 9.7 33% 

Mixedwood (Deciduous) 13 20.1 20.9 -0.8 ± 1 -4% 3.5 17% 

Mixedwood (Conifer) 13 18.6 25.6 -7 ± 1 -38% 7.9 42% 

Mid-tolerant Hardwood 28 22.4 24.1 -1.8 ± 0.9 -8% 5.1 23% 

Intolerant Hardwood 15 33.9 35.1 -1.1 ± 1.5 -3% 5.8 17% 

Red Pine Plantation 23 39.2 31.2 7.9 ± 1.4 20% 10.4 27% 

White Pine Managed 14 25 25.8 -0.9 ± 1.5 -3% 5.4 22% 

White Pine Plantation 6 25.2 22.1 1.3 ± 2.8 5% 6.4 25% 

White Pine Natural 93 31 29.9 1.1 ± 0.8 3% 8.2 26% 

Tolerant Hardwood 23 27.3 31.7 -4.5 ± 1.6 -16% 8.7 32% 

Spruce Plantation 12 28.3 25.2 3.2 ± 1.6 11% 6.1 21% 

All 268 27.9 27.5 0.3 ± 0.5 1% 7.4 26% 
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4.6.2 Stand-level validation data results 

Stand-level validation data, as described in Section 4.2, was used to assess the stand-level predictions of 

forest inventory attributes. These validation data are completely independent, and were not used for 

model development or calibration. In the comparison between observed and predicted stand-level 

attributes, the observed attribute for each stand is the arithmetic average of the field samples (i.e. cruise 

stations) found within that stand. The predicted attribute is the arithmetic average of the SPL-derived grid 

cell estimates within the stands. For some attributes, measurement approaches for the calibration and 

validation data were not identical and these differences undoubtedly contribute some uncertainty to the 

comparisons. Where relevant, these are highlighted below and should be considered when interpreting the 

results presented. Overall, the area-based models generated with data had minimal bias and a reasonable 

level of error. Results did vary by forest types however, with managed white pine typically having the 

largest relative bias and RMSE. Conversely, jack pine stands tended to have low relative bias and RMSE. 

 

4.6.2.1 Top height 

By definition, top height represents the average height of the thickest 100 trees/ha. For the calibration 

data, top height was the average of the six tallest trees in the plot (equalling 100 trees/ha). However, for 

the validation data, only the largest tree at each prism station was measured for height. These differences 

in field protocols resulted in large biases for top height shown in Table 14. Managed white pine stands 

had the largest relative bias at 21% and largest relative RMSE at 22% (Table 14; Figure 5; Appendix E, 

Figure E1), reflecting the common scenario whereby the few large trees left in the stand following 

harvesting are combined with shorter trees to enable the calculation of top height, thereby lowering top 

height for the calibration data in these forest types. Of note, a key challenge for the top height attribute is 

having an adequate sample of trees to enable top height calculation at the plot level; the degree to which 

the sample used for the calculation of top height at the plot-level is also representative of stand-level 

height distributions varies considerably. 

 

Table 14. Validation results for top height. 

Forest Type N 
Observed 

(m) 
Predicted 

(m) 
Bias + SE 

(m) 
Bias% 

RMSE 
(m) 

RMSE% 

Black Spruce 2 25.6 22 3.6 ± 0.1 14% 3.6 14% 

Jack Pine 2 22.2 22.7 -0.4 ± 0.3 -2% 0.5 2% 

Lowland Conifer 1 19.1 18.2 0.9 ± NA 4% NA NA 

Mixedwood 4 25 22.3 2.7 ± 0.4 11% 2.8 11% 

Oak 2 26.3 24.7 1.7 ± 1.2 6% 2.1 8% 

Poplar 2 27.8 25.2 2.7 ± 2.4 10% 3.6 13% 

Red Pine Plantation 4 25.3 24.6 0.7 ± 1 3% 1.9 8% 

Managed White Pine 3 32 25.2 6.8 ± 1.6 21% 7.2 22% 

Natural White Pine  4 28.7 25.4 3.3 ± 0.1 12% 3.3 12% 

Tolerant Hardwood 3 26.9 23.3 3.6 ± 0.6 14% 3.7 14% 

All 27 26.5 23.8 2.7 ± 0.5 10% 3.6 14% 
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Figure 5. Stand-level assessment of observed versus predicted values for top height. 

 

4.6.2.2 Gross total volume, merchantable stems 

It is worth noting that the non-parametric approach used to generate the predictive models (random 

forests) used approximately 63% of the calibration data to generate predictions for each regression tree 

and is unable to extrapolate beyond the range of that calibration data. As a result, these random forest 

models are known to under predict high values and over predict low values (White et al. 2017). In this 

study however, the calibration data used in model development (Table 1) covered a much broader range 

of volumes than the validation data (Table 3), so extrapolation should not theoretically be an issue for 

volume predictions in the validation stands.  

Predictions of gross total volume for merchantable stems were relatively unbiased, but bias varied by 

forest type (Table 15; Figure 6; Appendix E, Figure E2). In particular, volume was underestimated for 

white pine managed stands, which are tall, but have had some of the overstorey trees removed to 

encourage growth of residual stems and establish regeneration. These stands have a relatively low volume 

to height ratio compared to the other forest types, leading to an overestimation of volume (relative bias = -

24%). Poplar stands also had a high relative negative bias (-13%), which may be a function of data 

compilation: ground estimates of volume use individual tree taper models, which work well for single 

straight tree stems; however hardwood tree species often have significant branching that confounds the 

definition and measurement of the main stem volume. Field crews also noted overstorey mortality in the 

poplar validation stands. Red pine plantations had the largest underestimation for merchantable volume 

(relative bias = 18%). As noted above, the calibration data for red pine plantation forest type covers a 

broader range of gross total merchantable volumes than the validation data; however, there are fewer 

calibration plots at the upper end of the distribution (i.e. with large volumes), so that may have influenced 

the results.  
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Table 15. Validation results for gross total volume, merchantable stems (DBH > 9 cm). 

Forest Type N 
Observed 

(m
3
/ha) 

Predicted 
(m

3
/ha) 

Bias + SE 
(m

3
/ha) 

Bias% 
RMSE 

(m
3
/ha) 

RMSE% 

Black Spruce 2 185 199 -14 ± 10 -8% 17.2 9% 

Jack Pine 2 206 217 -11 ± 3 -5% 11.5 6% 

Lowland Conifer 1 150 125 25 ± NA 16% NA NA 

Mixedwood 4 221 227 -6 ± 6 -3% 11.2 5% 

Oak 2 279 287 -8 ± 1 -3% 8.2 3% 

Poplar 2 255 288 -34 ± 1 -13% 33.8 13% 

Red Pine Plantation 4 330 271 59 ± 21 18% 68.8 21% 

Managed White Pine 3 174 215 -41 ± 19 -24% 49.6 28% 

Natural White Pine  4 308 283 25 ± 4 8% 26.1 8% 

Tolerant Hardwood 3 233 250 -17 ± 11 -7% 23.2 10% 

All 27 246 245 1 ± 7 0% 36 15% 

 

 

 

Figure 6. Observed versus predicted values of stand-level gross total volume of merchantable stems. 
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4.6.2.3 Merchantable stem volume 

Overall, results for merchantable stem volume (Table 16; Figure 7; Appendix E, Figure E3) are similar to 

those of gross total volume of merchantable stems (Table 15), with minimal relative bias of 1% and 

relative RMSE of 16%. Merchantable stem volume was overestimated for poplar and managed white 

pine, and underestimated for lowland conifer (a lone cedar stand that was originally photointerpreted as a 

spruce stand). 

Table 16. Validation results for merchantable stem volume. 

Forest Type N 
Observed 

(m
3
/ha) 

Predicted 
(m

3
/ha) 

Bias + SE 
(m

3
/ha) 

Bias% 
RMSE 

(m
3
/ha) 

RMSE% 

Black Spruce 2 152 167 -15 ± 11 -10% 18.8 12% 

Jack Pine 2 183 187 -4 ± 6 -2% 7.5 4% 

Lowland Conifer 1 125 97 27 ± NA 22% NA NA 

Mixedwood 4 168 175 -7 ± 6 -4% 13 8% 

Oak 2 229 227 2 ± 5 1% 5.5 2% 

Poplar 2 210 245 -36 ± 10 -17% 37.1 18% 

Red Pine Plantation 4 295 239 56 ± 15 19% 61.3 21% 

Managed White Pine 3 161 195 -34 ± 19 -21% 43.6 27% 

Natural White Pine  4 266 241 26 ± 5 10% 27.3 10% 

Tolerant Hardwood 3 178 194 -17 ± 14 -9% 25.3 14% 

All 27 208 205 2 ± 7 1% 33.7 16% 

 

 

Figure 7. Observed versus predicted values for merchantable stem volume. 
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4.6.2.4 Basal area, merchantable stems 

Results for merchantable basal area are shown in Table 17, Figure 8, and Appendix E (Figure E4). 

Overall, relative bias was small (2%) and relative RMSE was 14%. Similar to trends observed for gross 

total volume of merchantable stems, basal area for merchantable stems is overestimated in managed white 

pine and poplar stands, and underestimated in lowland conifer and mature red pine plantations. Once 

again, the largest relative RMSE is associated with managed white pine stands. 

 

Table 17. Validation results for merchantable basal area. 

Forest type N 
Observed 

(m
2
/ha) 

Predicted 
(m

2
/ha) 

Bias + SE 
(m

2
/ha) 

 Bias% 
RMSE 

(m
2
/ha) 

 RMSE% 

Black Spruce 2 22.4 23.5 -1.1 ± 0.8 -5% 1.4 6% 

Jack Pine 2 22.3 22.8 -0.5 ± 0.5 -2% 0.7 3% 

Lowland Conifer 1 23.4 16.5 6.9 ± NA 29% NA NA 

Mixedwood 4 26.8 27.3 -0.5 ± 0.8 -2% 1.5 5% 

Oak 2 29.6 30.5 -0.9 ± 1 -3% 1.3 4% 

Poplar 2 24.7 29.1 -4.4 ± 0.6 -18% 4.4 18% 

Red Pine Plantation 4 31.6 25.3 6.3 ± 1.9 20% 7.1 22% 

Managed White Pine 3 15 18.4 -3.4 ± 1.2 -23% 3.8 25% 

Natural White Pine  4 31.5 29.5 2 ± 1.1 6% 2.8 9% 

Tolerant Hardwood 3 27.5 28.2 -0.7 ± 1.1 -3% 1.7 6% 

All 27 26.2 25.8 0.5 ± 0.7 2% 3.8 14% 

 

 

 

Figure 8. Observed versus predicted values for basal area, merchantable stems. 
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4.6.2.5 Quadratic mean DBH, merchantable stems 

Overall, the predicted merchantable quadratic mean DBH for the validation stands had minimal bias 

(1%), with the highest negative bias for poplar stands and highest positive bias for managed white pine 

stands (Table 18; Figure 9; Appendix E, Figure E5). 

Table 18. Validation results for quadratic mean DBH, merchantable stems. 

Strata N 
Observed 

(cm) 
Predicted 

(cm) 
Bias + SE 

(cm) 
Bias% 

RMSE 
(cm) 

RMSE% 

Black Spruce 2 19.7 20.5 -0.8 ± 0.3 -4% 0.9 4% 

Jack Pine 2 19.4 20.8 -1.4 ± 1.5 -7% 2 10% 

Lowland Conifer 1 19.2 18.3 0.9 ± NA 5% NA NA 

Mixedwood 4 20.3 20.8 -0.5 ± 0.3 -3% 0.7 4% 

Oak 2 24.7 23.2 1.5 ± 1.1 6% 1.9 7% 

Poplar 2 20.5 24.1 -3.6 ± 2.4 -17% 4.3 21% 

Red Pine Plantation 4 26.3 25.5 0.7 ± 2.4 3% 4.3 16% 

Managed White Pine 3 35.7 31 4.7 ± 1.8 13% 5.4 15% 

Natural White Pine  4 24.2 23.9 0.4 ± 0.8 1% 1.4 6% 

Tolerant Hardwood 3 21.0 21.8 -0.8 ± 0.6 -4% 1.1 5% 

All 27 23.7 23.5 0.2 ± 0.6 1% 2.9 12% 

 

 

Figure 9. Observed versus predicted values for quadratic mean DBH, merchantable stems. 
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4.7 Comparison of 2012 LML and 2018 SPL area-based forest inventory attribute estimates 

4.7.1 2012 data: lidar, calibration, and validation 

In 2012, conventional, linear model lidar (LML) data were acquired for the PRF to support the generation 

of an EFI. The 2012 LML lidar data were collected over the PRF from August 17
th
 to 20

th
, 2012.  The 

Riegl 680i sensor was carried aboard a Cessna 172 aircraft flown at an average flying altitude of 725 m. 

Technical acquisition specifications are provided in Table 26. The average point density was 

approximately 15 points/m
2
 (all returns) and ~6 points/m

2
 (last returns). The data were originally 

collected as full waveform and written out as a discrete point file for use in subsequent applications. 

A total of 223 ground plots were acquired between the fall of 2012 and the summer of 2014 to support 

area-based modelling. Plots had a radius of 14.1 m
2
 and an area of 625 m

2
 and measurement protocols 

were similar to those used in 2018 (Appendix C). In order to represent the full range of forest conditions 

within the PRF, plot selection was conducted using a structurally guided sampling approach, as detailed 

in White et al. (2013). Structurally guided sampling uses the lidar point cloud metrics (Appendix F) in a 

Principal Component Analysis. For the 2012 lidar metrics, the first principal component was strongly 

loaded to metrics of crown closure and vertical complexity, whereas the second principal component was 

more heavily weighted to lidar metrics of height and height distributions.  

Live and dead trees with a DBH ≥ 9.1 cm were each assessed on the 625 m
2
 plot for species and DBH, 

and had heights sampled across the range of diameter classes. Trees with a DBH less than 9.1 cm but 

taller than 1 m and that had a DBH > 2.5 cm were assessed by counting by species and 1 m height classes. 

An average DBH was measured and assigned to each species-height class assessed. Plots were 

summarized to per hectare values for all trees >2.5 cm (all) and ≥ 9.1 cm (merchantable). 

Height-DBH curves were fit by species for all plots involved in this study. A variance of the Sharma and 

Parton (2009) ht-DBH model was used to predict heights.  The variant of the prediction equation is the 

following: 

 )1()(3.1ˆ DbheTopHtth                                        (Eq. 7) 

Where TopHt is defined as the average height of the 100 thickest trees per ha. 

Zakrzewski’s taper model (Zakrzewski 1999) was used to estimate total tree volumes and merchantable 

volumes using Crown Forest Sustainability Act (CFSA) upper stem diameter limits. The equation was 

refit in Zakzrewski and Penner (2013) and Equation 1 and the coefficients in Table 2 of that report were 

used. Soft maple taper equations were used for unknown hardwood species. 

As per the 2018 SPL EFI described herein, validation data were acquired to provide an independent data 

source for validating the 2012 area-based estimates at the stand level. Intensive variable radius sampling 

(VAR) with a BAF 2 prism, on a 50 m grid interval was carried out in 19 stands of the PRF during the 

summer of 2015. Many of these stands corresponded with planned harvesting allocations scheduled for 

the winter of 2015 or subsequent years. As a result, some stands used for the validation of the 2012 EFI 

had previously been cruised at a lower intensity in 2014 or earlier in 2015. In these situations, previously 

collected stations were spatially included within the overlaid 50 m grid interval planned for this 

investigation. All stations that fell within the stand polygon were eligible. No internal buffering from the 

stand edge was implemented. The spatial distribution of the validation stands was constrained by planned 

operational blocks, and the range of conditions sampled for forest types was impacted. Two of the 

validation stands (472 and 509) were removed from any further analysis due to excessive windthrow that 
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occurred between the time of the lidar acquisition and validation sampling. The 17 stands used for 

validation of the 2012 EFI (Figure 10) ranged in size from 3.2 ha to 37.8 ha, resulting in a sampling 

intensity range of 13 to 145 sampling stations per stand. Live trees > 10 cm that were deemed “in” were 

recorded by DBH and species. No heights were measured during the cruising. The same compilation 

methods were used for these data as for the 2018 calibration plot dataset. The species height-DBH 

relationships built from the 2012 LML calibration plots were used in the compilation of the validation 

data. Stand summaries for the 2012 LML validation data are provided in Table 19. Note that to permit 

later comparisons with the 2018 SPL results, a similar forest type classification was assigned to each 

stand. This post-sampling modification to the forest type assignment resulted in an uneven sampling 

matrix; however, the consistency in forest type enabled comparison between attribute estimates for the 

2012 and 2018 EFIs. 

 

Figure 10. Location of independent validation stands used to assess 2012 area-based model estimates of forest 

inventory attributes. 
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Table 19. Summary of stand-level validation data for the 2012 EFI. Note that merchantable stem volume (mvol) and gross total volume for merchantable stems  

(TVOL_merch) were expressed per ha and by stand total. Species codes are provided in Appendix B. 

Stand 
Forest 
Type 

Species Composition N Ha 
BA_merch 
(m

2
/ ha) 

DQ_merch 
(cm) 

MVOL 
(m

3
/ha) 

MVOL 
stand 
total 
(m

3
) 

TVOL_merch 
(m

3
/ha) 

TVOL_merch 
stand total 

(m
3
) 

MG1 PineNatural Pr62Pw32Bf3Sw1La1Bw1 18 4.9 28.1 30.6 325.2 1585.4 348.9 1701.0 

MG4 PineNatural Pw40Or28Pr10Bw6BF6Mr3Sw3 37 8.9 26.3 24.1 204.2 1837.8 242.3 2180.3 

MG5 PineNatural Pr63Pw20Bf8Sw4Mr3Bw1Be1 19 4.4 23.9 24.9 245.3 1088.7 267.7 1188.0 

MG7 PineNatural Pr52Pw29Bf15Mr2Sw2 20 4.7 19.2 24.1 192.2 889.0 210.4 973.1 

MG8 PineNatural Pr39Pw36Bf10Mr7Po3Sw2Bw2 65 15.1 28.0 24.5 264.2 3996.6 301.1 4553.8 

560 PineNatural Pw41Mr15BF10Pr9Po8Sw5 141 37.8 23.8 22.8 191.2 7180.7 230.9 8671.6 

574 PineNatural Pw34Pr24Bf13Or11Mr9Sw4Sb2Po2 41 10.3 25.9 22.9 208.4 2122.6 242.28 2468.2 

589 PineNatural Pw44Bf28Po8Pr7Sw5Mr4Sb2Ab1Bw1 51 12.7 26.6 21.7 220.8 2760.0 252.4 3154.5 

463 TolerantHwd Mh18Be17Pw13PT7By4Bw4Pl3Bd3Sw2 59 14.3 28.9 23.5 215.3 3122.1 277.4 4022.6 

473 TolerantHwd Mr27Pw12Mh12Bf10Sw8Or8Bw5 94 23.6 26.3 21.7 161.6 4777.9 218.5 6460.6 

631 TolerantHwd 
Or23Mh15Sw13Po12Be9Bw7Pw5By4Mr4
Aw1 

13 3.2 25.5 20.2 134.9 438.4 206.1 669.8 

171 PrPlantation Pr48Sw29Bf6By5Bw5Mr2Pw2Bd2Mh1 21 5.2 30.1 22.6 255.4 1341.1 295.5 1551.4 

556 Mixedwood Pw34Bf31Sw13Bw4Mr3 17 3.7 23.1 19.8 162.7 589.8 197.2 715.0 

604 Mixedwood Bf33Po20Pw14Sw10Mr10Sb6Bw5Pr1Or1 81 20.5 23.7 18.6 143.9 2967.7 186.1 3837.7 

857 Mixedwood 
Po25Pw20Or20Mr11BF9SW6Mh3Bw2Bd
2Iw1Ab1 

73 19.0 24.5 22.8 177.9 3379.3 225.3 4279.8 

575 Oak Or42Pw24Mr11Bf10Pr4Sw4 71 17.3 26.1 20.9 160.6 2840.8 209.1 3697.7 

887 Oak 
Or34Pw30Mr9Pr8Bf8Sw3Po3Bw2Sb1Mh
1Ab1 

145 34.6 25.9 22.0 174.4 6017.1 221.8 7650.4 
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4.7.2 2012 EFI: area-based modelling approach 

Similar to the 2018 EFI, a non-parametric random forests modelling approach (Breiman, 2001) was 

implemented using the randomForest package in R (Liaw and Wiener 2002), with the mtry parameter set 

to the number of predictors divided by 3 (p/3), and the ntree parameter set to 500. Inventory attributes 

were predicted for a 25 m grid cell, with 145 predictors generated from the lidar point cloud. Thresholds 

for metric calculation included both 0 m and 2 m. Additional predictors for use in model development 

were generated using a canopy height model (CHM) with a 50 cm spatial resolution. These predictors 

included measures of canopy roughness, ruggedness, mean, variance, and standard deviations based on 

various window sizes. A full list of the predictors used in the development of the 2012 area-based models 

is provided in Appendix F. 

Note that for the 2012 area-based models, all inventory attributes were predicted directly (and 

independently). In some cases, this approach can lead to predictions that may not conform to logical 

expectations, such as when gross total volume for merchantable stems exceeds gross total volume for all 

stems. To address this, some of the attributes in the 2018 EFI were derived from other predicted 

attributes, rather than being predicted directly, as described in the area-based modelling approach 

described in Section 4.4. A comparison of random forest OOB error indicates similar model performance 

between the 2012 LML and 2018 SPL area-based models (Table 20). 

Table 20.  Random forest out-of-bag (OOB) RMSE and bias of calibration plot data for inventory attributes. Note 

that one plot (PRF208, PwPlant) was removed as the 99
th

 percentile of lidar heights was < 5m, which was the 

height threshold for predicting merchantable attributes. 

 
Basal Area, 

merchantable stems 
(m

2
/ha) 

Quadratic Mean DBH, 
merchantable stems (cm) 

Merchantable Stem 
Volume (m

3
/ha) 

Gross Total Volume, 
merchantable stems 

(m
3
/ha) 

 2012 2018 2012 2018 2012 2018 2012 2018 

N 223 268 223 268 223 268 223 268 

RMSE 7.6 7.4 5.6 5.3 85.3 83.5 86.1 87.2 

RMSE% 27.9% 26.4% 22.9% 21.0% 38.8% 34.1% 31.3% 30.6% 

Bias 0.0 0.3 0.0 0.0 -0.3 4.2 0.3 0.8 

Bias% 0.0% 1.1% -0.1% 0.1% -0.1% 1.7% 0.1% 0.3% 

 

4.7.3 Comparison of results for stand-level validation data: 2012 and 2018 EFIs 

As noted previously, all forest inventory attributes for the 2012 area-based models were predicted 

directly, in contrast to the approach applied for the 2018 area-based models, whereby VBAR ratios were 

used to constrain estimates for merchantable basal area, merchantable stem volume, and gross total 

volume for merchantable stems (Table 6 and Table 7). The variable importance scores for the lidar 

metrics that were used in the area-based models are provided in Appendix G. An evaluation of overall 

results using absolute and relative RMSE and bias are presented in Table 21. Results by forest type are 

presented for 2012 (Table 22) and 2018 (Table 23). The equations used to calculate bias and relative bias 

are the same as those described in Section 4.5. Both merchantable stem volume and gross total volume for 

merchantable stems were expressed at the stand level (i.e. stand total in m
3
), which was calculated as the 

mean per ha value (m
3
ha

-1
) multiplied by the total area of the validation stand (ha). Both the 2012 and 

2018 attribute models were applied to generate wall-to-wall estimates for PRF with a grid cell resolution 

of 25 m.  
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Table 21. Overall validation results for 2012 LML and 2018 SPL area-based estimates. Absolute and relative RMSE 

and bias statistics are reported for validation stands. BA_merch = basal area, merchantable stems, DQ_merch = 

quadratic mean DBH, merchantable stems. Note that merchantable stem volume (MVOL) and gross total volume for 

merchantable stems (TVOL_merch) were expressed per ha and by stand total. 

 
BA_merch 

(m
2
/ha) 

DQ_merch 
(cm) 

MVOL (m
3
/ha) 

MVOL 
Stand Total 

(m
3
) 

TVOL merch 
(m

3
/ha) 

TVOL merch 
Stand Total 

(m
3
) 

2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 

N 17 27 17 27 17 27 17 27 17 27 17 27 

RMSE 1.5 3.8 2.6 2.9 20.6 33.7 219.7 295.7 17.3 36.0 207.8 312.1 

%RMSE 5.8% 14.5% 11.6% 12.2% 10.2% 16.2% 8% 11.9% 6.8% 14.6% 6.1% 10.4% 

Bias 0.3 0.5 -1.2 0.2 11.3 2.4 143.0 2.0 -9.7 1.0 -121.7 -22.0 

%Bias 1.0% 1.7% -5.3% 1.0% 5.6% 1.2% 5.2% 0.1% -3.8% 0.4% -3.6% -0.7% 

 

Overall, the validation results for the 2012 and 2018 estimates data are not markedly different. On average, the 

relative RMSE was 5% larger for the estimates generated from the 2018 SPL data. In contrast, the relative bias was 

typically larger for the 2012 estimates, but on average, differed by less than 1% overall. Of note, 2012 LML had 

larger bias for merchantable stem volume (underestimating by an average of 4.75%), and gross total volume of 

merchantable stems (overestimating by an average of 3.5%).  

Table 22. 2012 Stand-level validation results by forest type. Note that merchantable stem volume (MVOL) and gross 

total volume for merchantable stems (TVOL_merch) were expressed per ha and by stand total. Absolute and relative 

RMSE and bias statistics are reported for validation stands. BA_merch = basal area, merchantable stems, 

DQ_merch = quadratic mean diameter, merchantable stems. Note that merchantable stem volume (MVOL) and 

gross total volume for merchantable stems (TVOL_merch) were expressed per ha and by stand total. 

 

 
Forest Type 

BA_merch 
(m2/ha) 

DQ_merch 
(cm) 

MVOL 
(m3/ha) 

MVOL 
Stand Total 

(m3) 

TVOL_merch 
(m3/ha) 

TVOL_merch 
Stand Total 

(m3) 

N 

Pine Natural 

8 8 8 8 8 8 

RMSE 1.3 3.6 23.7 280.4 10.6 59.3 

RMSE% 5.1% 14.8% 10.2% 10.5% 4.0% 1.9% 

Bias 0.4 -2.1 21.2 240.8 -3.4 -17.6 

Bias% 1.6% -8.4% 9.2% 9.0% -1.3% -0.6% 

N 

Red Pine 
Plantation 

1 1 1 1 1 1 

RMSE 1.2 1.7 34.2 179.3 5.7 30.0 

RMSE% 4.1% 7.5% 13.4% 13.4% 1.9% 1.9% 

Bias 1.2 -1.7 34.2 179.3 5.7 30.0 

Bias% 4.1% -7.5% 13.4% 13.4% 1.9% 1.9% 

N 

Tolerant 
Hardwood 

3 3 3 3 3 3 

RMSE 1.9 1.0 21.1 107.9 31.8 271.4 

RMSE% 7.0% 4.4% 12.4% 3.9% 13.6% 7.3% 

Bias -1.2 -0.4 -9.5 -17.1 -26.3 -254.1 

Bias% -4.6% -2.1% -5.6% -0.6% -11.2% -6.8% 

N 

Mixedwood 

3 3 3 3 3 3 

RMSE 2.0 0.7 7.4 144.0 14.2 217.9 

RMSE% 8.3% 3.6% 4.6% 6.2% 7.0% 7.4% 

Bias 1.4 -1.1 2.4 33.2 -10.8 -129.4 

Bias% 5.7% -5.5% 1.5% 1.4% -5.3% -4.4% 

N 

Oak 

2 2 2 2 2 2 

RMSE 0.2 1.2 5.2 176.8 16.1 413.3 

RMSE% 0.9% 5.7% 3.1% 4.0% 7.5% 7.3% 

Bias -0.2 1.2 4.4 138.7 -16.0 -403.6 

Bias% -0.7% 5.7% 2.6% 3.1% -7.4% -7.1% 
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Table 23. 2018 stand-level validation results, by forest type. Note that merchantable stem volume (MVOL) and gross 

total volume for merchantable stems (TVOL_merch) were expressed per ha and by stand total. 

 

Forest Type 

Basal Area, 
merchantable 

stems 
(m

2
/ha) 

Quadratic 
Mean DBH, 

merchantable 
stems 
(cm) 

MVOL 
(m3/ha) 

MVOL 
(m3) 

TVOL 
merch 

(m3/ha) 

TVOL 
merch 
(m3) 

        

N 

Black Spruce 

2 2 2 2 2 2 

RMSE 1.4 0.9 18.9 124.1 17.2 113.1 

RMSE% 6.3% 4.3% 12.4% 11.7% 9.3% 8.8% 

Bias -1.1 -0.8 -15.1 -100.3 -14.1 -94.5 

Bias% -5.1% -4.1% -9.9% -9.5% -7.6% -7.3% 

N 

Jack Pine 

2 2 2 2 2 2 

RMSE 0.7 2.0 7.5 87.1 11.5 123.3 

RMSE% 3.3% 10.4% 4.1% 5.1% 5.6% 6.4% 

Bias -0.5 -1.4 -3.9 -52.9 -11.2 -110.5 

Bias% -2.3% -7.4% -2.1% -3.1% -5.4% -5.8% 

N 

Lowland 
Conifer 

1 1 1 1 1 1 

RMSE 7.0 0.9 27.1 418.6 24.7 381.5 

RMSE% 29.8% 4.7% 21.8% 21.8% 16.5% 16.5% 

Bias 7.0 0.9 27.1 418.6 24.7 381.5 

Bias% 29.8% 4.7% 21.8% 21.8% 16.5% 16.5% 

N 

Mixedwood 

4 4 4 4 4 4 

RMSE 1.5 0.8 13.0 206.9 11.2 180.5 

RMSE% 5.6% 3.7% 7.7% 6.9% 5.1% 4.6% 

Bias -0.5 -0.6 -7.3 -113.7 -5.8 -88.0 

Bias% -1.8% -2.8% -4.4% -3.8% -2.6% -2.3% 

N 

Oak 

2 2 2 2 2 2 

RMSE 1.3 1.8 5.5 109.1 8.2 157.6 

RMSE% 4.4% 7.4% 2.4% 2.5% 2.9% 2.9% 

Bias -0.8 1.4 1.9 39.8 -8.1 -156.5 

Bias% -2.8% 5.8% 0.8% 0.9% -2.9% -2.9% 

N 

Poplar 

2 2 2 2 2 2 

RMSE 4.4 4.3 37.1 221.1 33.8 258.4 

RMSE% 17.7% 21.0% 17.7% 15.8% 13.3% 15.4% 

Bias -4.3 -3.6 -35.6 -219.7 -33.8 -238.1 

N 

Red Pine 
Plantation 

4 4 4 4 4 4 

RMSE 7.1 4.3 61.3 327.3 68.8 389.6 

RMSE% 22.3% 16.3% 20.8% 21.5% 20.8% 22.5% 

Bias 6.3 0.7 55.6 294.1 58.7 322.6 

Bias% 19.8% 2.8% 18.9% 19.3% 17.8% 18.7% 

N 

Managed 
White Pine 

3 3 3 3 3 3 

RMSE 3.8 5.4 43.6 399.5 49.6 469.0 

RMSE% 25.1% 15.0% 27.1% 20.5% 28.6% 22.2% 

Bias -3.4 4.7 -34.3 -333.5 -41.5 -419.6 

Bias% 
-22.7% 13.3% -21.3% 

-
17.1% -23.9% -19.9% 

N 

Pine Natural 

4 4 4 4 4 4 

RMSE 2.8 1.4 27.3 362.3 26.1 361.8 

RMSE% 9.0% 6.0% 10.2% 10.2% 8.5% 8.8% 

Bias 2.0 0.4 25.6 332.3 25.0 330.9 

Bias% 6.4% 1.5% 9.6% 9.4% 8.1% 8.0% 

N 

Tolerant 
Hardwood 

3 3 3 3 3 3 

RMSE 1.7 1.2 25.3 371.6 23.2 328.6 

RMSE% 6.2% 5.5% 14.3% 11.4% 10.0% 7.7% 

Bias -0.7 -0.8 -16.6 -249.3 -17.0 -260.2 

Bias% -2.6% -3.7% -9.3% -7.6% -7.3% -6.1% 
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It should be noted that a direct comparison of the validation results from 2012 and 2018 EFIs is 

challenging as a result of the following considerations; 

1. Different stands were sampled for the 2012 and 2018 validation data; 

2. The range and number of forest types included in the validation sample is not the same for both 

2012 and 2018. Only a subset of forest types was common to both validation datasets (Table 24); 

3. The number of plantation or silviculturally managed stands sampled in the 2012 and 2018 

validation data is not consistent, with 2018 having more managed stands (with managed stands 

having conditions that make them more difficult to model, such as multiple distinctive layers); 

4. Although many of the predictor variables derived from the lidar were similar, the 2012 models 

used more than twice as many input predictors (145) than 2018 (66); 

5. Estimates for some attributes were not consistent between the 2012 and 2018 data. For the 2012 

inventory, all attributes were modelled directly, but for 2018, some attributes were derived using 

ratio constraints to maintain consistency in estimation; and 

6. Growth and mortality occurred between the acquisition of the 2012 LML data and the field plot 

measurement, whereas no growing season occurred between the acquisition of the 2018 SPL data 

and the acquisition of the validation data.  

Overall, the accuracy of inventory attributes estimates derived from 2012 LML and 2018 SPL area-

based models was similar (Table 24); however for all attributes considered, the relative RMSE was 

greater for the 2018 estimates and ranged from a low of 0.6% for merchantable quadratic mean 

diameter to a high of 8.7% for merchantable basal area. In contrast, relative bias was always larger for 

the 2012 estimates, with the exception of merchantable basal area. The largest positive bias was for 

per ha estimates of gross total volume for merchantable stems at 5.6%, and the largest negative bias 

was for 2012 estimates of quadratic mean diameter of merchantable stems at -5.3%. Stand-level 

merchantable stem volume and gross total volume for merchantable stems were the attributes 

estimated with the lowest RMSE% and bias%. For the 2012 EFI, merchantable basal area was the 

attribute estimated with the lowest RMSE% and bias%. 

 

Table 24. Overall stand-level validation results for 2012 and 2018 EFIs. 

 
BA_merch 

(m
2
/ha) 

DQ_merch 
(cm) 

MVOL 
(m

3
/ha) 

MVOL Total 
(m

3
) 

TVOL_merch 
(m

3
/ha) 

TVOL_merch 
Total 
(m

3
) 

2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 

RMSE 1.5 3.8 2.6 2.9 20.6 33.7 219.7 295.7 17.3 36.0 207.8 312.1 

RMSE% 5.8% 14.5% 11.6% 12.2% 10.2% 16.2% 8% 11.9% 6.8% 14.6% 6.1% 10.4% 

Bias 0.3 0.5 -1.2 0.2 11.3 2.4 143.0 2.0 -9.7 1.0 -121.7 -22.0 

Bias% 1.0% 1.7% -5.3% 1.0% 5.6% 1.2% 5.2% 0.1% -3.8% 0.4% -3.6% -0.7% 
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Trends in estimation accuracy for 2012 and 2018 that were observed overall (Table 24) were not 

consistent for the forest types common to both EFIs: pine natural, tolerant hardwood, mixedwood (Table 

25). Relative RMSE and bias varied by forest type and attribute, with no consistent trends observed 

between 2012 and 2018. Of note, estimation bias for tolerant hardwoods was always negative, regardless 

of year or attribute. 

 

Table 25. Comparison of 2012 and 2018 validation results for forest types common to both EFIs. 

    BA_merch 
(m2/ha) 

DQ_merch 
(cm) 

MVOL (m3/ha) MVOL Total (m3) 
TVOL_merch 

(m3/ha) 
TVOL_merch 

Total (m3) 

2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 2012 2018 

N 

P
in

e 
 N

at
u

ra
l 

8 4 8 4 8 4 8 4 8 4 8 4 

RMSE 1.3 2.8 3.6 1.4 23.7 27.3 280.4 362.3 10.6 26.1 59.3 361.8 

RMSE% 5.1% 9.0% 14.8% 6.0% 10.2% 10.2% 10.5% 10.2% 4.0% 8.5% 1.9% 8.8% 

Bias 0.4 2.0 -2.1 0.4 21.2 25.6 240.8 332.3 -3.4 25.0 -17.6 330.9 

Bias% 1.6% 6.4% -8.4% 1.5% 9.2% 9.6% 9.0% 9.4% -1.3% 8.1% -0.6% 8.0% 

N 

To
le

ra
n

t 
H

ar
d

w
o

o
d

 

3 3 3 3 3 3 3 3 3 3 3 3 

RMSE 1.9 1.7 1.0 1.2 21.1 25.3 107.9 371.6 31.8 23.2 271.4 328.6 

RMSE% 7.0% 6.2% 4.4% 5.5% 12.4% 14.3% 3.9% 11.4% 13.6% 10.0% 7.3% 7.7% 

Bias -1.2 -0.7 -0.4 -0.8 -9.5 -16.6 -17.1 -249.3 -26.3 -17.0 -254.1 -260.2 

Bias% -4.6% -2.6% -2.1% -3.7% -5.6% -9.3% -0.6% -7.6% -11.2% -7.3% -6.8% -6.1% 

N 

M
ix

e
d

w
o

o
d

 

3 4 3 4 3 4 3 4 3 4 3 4 

RMSE 2.0 1.5 0.7 0.8 7.4 13.0 144.0 206.9 14.2 11.2 217.9 180.5 

RMSE% 8.3% 5.6% 3.6% 3.7% 4.6% 7.7% 6.2% 6.9% 7.0% 5.1% 7.4% 4.6% 

Bias 1.4 -0.5 -1.1 -0.6 2.4 -7.3 33.2 -113.7 -10.8 -5.8 -129.4 -88.0 

Bias% 5.7% -1.8% -5.5% -2.8% 1.5% -4.4% 1.4% -3.8% -5.3% -2.6% -4.4% -2.3% 

 

 

4.8 Summary 

To quantify the performance of SPL data in an area-based approach to predicting forest inventory 

attributes, we developed area-based models for a suite of forest inventory attributes using SPL data 

acquired in July 2018, and co-located ground plot data. We quantified the accuracy of the resulting forest 

inventory attribute predictions using independent, stand-level validation data, and then compared the 

accuracy of the 2018 models to that of an earlier EFI that was generated using LML acquired in 2012. 

Overall, we found that the area-based models generated using the SPL data produced accurate predictions 

of our forest inventory attributes of interest, with minimal bias. Certain forest types were more 

challenging to model as a function of multiple layers or cohorts in the stands. The results achieved using 

the 2018 SPL data were comparable to those generated with the 2012 LML data. We therefore conclude 

that the SPL data provided a useful data source for generating reasonably accurate estimates of forest 

inventory attributes in an area-based approach. 
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5. Objective 2: Quantify the performance of SPL in characterizing terrain under varying 

forest types and canopy densities 

One of the advantages associated with SPL technology is the capacity for large area coverage. The nature 

of the SPL instrument means that SPL data can be acquired at higher altitudes than is currently possible 

with linear mode lidar acquisitions. A key objective of this project was to assess the accuracy with which 

SPL technology could characterize terrain in different forest types and density of vegetation cover.  

5.1 Lidar data 

In addition to the leaf-on SPL data acquired in 2018 (Table 2), SPL data were also acquired for a portion 

of PRF in May 2019 (Figure 11), under predominantly leaf-off conditions. These data were acquired at 

two different altitudes, 3800 m and 2000 m, for the purposes of testing the impact of acquisition altitude 

on terrain characterization. The 2019 SPL data were not used in the forest inventory applications 

described in Section 4. In addition to the SPL data, the terrain assessment also considered a 2012 LML 

acquisition (leaf-on), which was used to generate an EFI for the PRF, as described in Section 4.7. Details 

for all four lidar datasets used in the terrain assessment are detailed in Table 26. 

Table 26. Lidar acquisition parameters for all four lidar datasets used in the terrain assessment. 

Parameter 2012 LML 2018 SPL 2019H SPL 2019L SPL 

Acquisition date and conditions (leaf-on or leaf-off) 
August 17–20  

Leaf-on 
July 1–2 
Leaf-on 

May 31 
Leaf-off 

May 31  
Leaf-off 

Sensor Riegl 680i Leica SPL100 Leica SPL100 Leica SPL100 

Laser wavelength (nm) 1550 532 532 532 

Laser beam divergence (mrad) 0.5 0.08 0.08 0.08 

Average flying altitude (m AGL) 750 3760 3760 2000 

Average flying speed (knots) <100 <180 <180 <160 

Pulse repetition rate (pulses/sec) 150,000 60,000 60,000 50,000 

Frequency 76.67 Hz 21 Hz 23 Hz 23 Hz 

Scan Angle (degrees) ±20 ±15 ±15 ±15 

Field of View (degrees) 40 30 30 30 

Swath Width (m) ~600–700 2000 2000 1000 

Aggregate Nominal Point Density (points/m
2
) 5.8 32.4 28.6 51.4 

Average ground point density (points/m
2
) 1.3 2.8 3.8 5.5 

Percentage of 25 m grid cells that have > 2 points 
classified as ground returns (%)

1
 

17.2 37.2 81.5 94.7 

Percentage of returns that are first returns 17.1 88.3 58.8 46.4 

Ratio of first returns to second returns 0.6 8.8 1.7 1.1 
1
Note that this is only calculated for the area common to all four lidar acquisitions, as shown in Figure 11. 

 

These lidar data vary in the degree to which they can penetrate through small openings in the canopy. A 

lidar sensor is capable of measuring multiple returns of energy for each laser pulse that it emits. The 

relative distribution of these returns provides an indication of whether or not the lidar pulse is intersecting 

features through the full vertical profile of the canopy. For example, the 2012 LML data records up to six 

returns for each laser pulse, with a relatively consistent distribution of returns for first returns to fourth 
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returns (Figure 12). Approximately 17% of 2012 LML returns are first returns. In contrast, the 2018 SPL 

data is dominated by first returns (> 88%), whereas leaf-off conditions for the 2019 SPL data increase the 

number of second and third returns (Table 25). The ratio of first to second returns is likewise insightful: 

the ratio for the 2012 LML is 0.6 compared to 8.8 for the 2018 SPL. Thus, although the aggregate 

nominal point density of the 2018 SPL data is almost 5.5 times greater than the 2012 LML data, the 

average ground point density of the 2018 SPL is, on average, only 2 times greater than that of the 2012 

LML data. Leaf-off conditions and lower acquisition altitudes further increase the average ground point 

density to 5.5 points/m
2
 for the SPL data acquired at 2000 m, and for these data 95% of 25 m grid cells 

have more than 2 points classified as ground returns (Table 26). 

 

 

Figure 11. Spatial extent of the four lidar collections used in the analysis of terrain accuracy. 
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Figure 12. Distribution of returns for each lidar acquisition, by return number. 

 

5.2 Real-Time Kinematic (RTK) survey data 

Horizontal and vertical control data were acquired for a total of 327 checkpoints using a Sokkia FX 105 

total station on June 17, 2019. The control network consisted of three published control locations 

maintained by the Ontario Ministry of Natural Resources and Forestry Control Survey Information 

Exchange (COSINE) database, as well as eight additional control points, established as inter-visible pairs 

distributed within the project study area. Three dual frequency Sokkia GSR2700 ISX receivers were 

stationed on the COSINE control monument locations and a fourth was used as a roving unit to provide 

coordinates for six of the new project control points. Due to the long baselines between COSINE 

monuments, the project control points were occupied for three hours with the roving unit. For the 

remaining two control points, a two-receiver method was used based on the calculated horizontal position 

of the Deep Bench Mark published control in Chalk River.   

RTK checkpoints represented a range of vegetated and non-vegetated conditions. A total of 85 

checkpoints were acquired in non-vegetated conditions (i.e. asphalt, gravel) and 242 checkpoints in 

vegetated conditions, that were characterized by the dominant tree species and or vegetation present (i.e. 

black spruce, coniferous plantation, intolerant hardwood, jack pine, low vegetation, mixedwood, red and 

white pine, and tolerant hardwood; Figure 13). Checkpoints were acquired along 50 or 100 m transects 

within each cover type group, with checkpoints located at 10 m intervals along the transects. 
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Figure 13. Location of RTK survey locations within the PRF. 

5.3 Lidar Penetration Index (LPI) 

To assess the impact of varying canopy cover conditions on the penetration of lidar pulses, and in turn, 

the accuracy of the DTM, the Lidar Penetration Index (LPI) was calculated for each of the four lidar 

acquisitions. This index provides a measure of the percentage of total returns that are found within ± 15 

cm of the ground surface, regardless of whether those returns are classified as ground or not. The LPI 

provides a consistent measure of how the terrain surface is being represented, irrespective of whether the 

acquisition is leaf-on or leaf-off. From these continuous LPI values, four LPI classes were generated: LPI 

< 10%, LPI ≥ 10% and LPI < 20%, LPI ≥ 20% and LPI < 30%, and LPI ≥ 30%. We then calculated the 

95
th
 percentile of the difference between the RTK elevation and the lidar elevation for the RTK check 

points within each of these LPI classes. Theoretically, we would expect that the RTK survey results 

would be more accurate when the value of the LPI is greater; in other words, we would expect that the 

95
th
 percentile of the differences between the RTK survey elevations and the lidar elevations would 

decrease as the LPI increases. 

5.4 Accuracy measures and qualitative assessment 

Vertical accuracy statistics were generated following the Ontario Elevation Accuracy Guidelines Version 

1.0 (OMNR, 2016), which is intended to be consistent with the American Society for Photogrammetry 

and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data (ASPRS, 

2014). Horizontal accuracy and relative (swath-to-swath accuracy) were not calculated as part of this 
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analysis. The target accuracy for the SPL acquisition was lidar Quality Level 2 or 10 cm Vertical 

Accuracy Class (ASPRS, 2014), analogous to the quality level of the 3D Elevation Program (3DEP) of 

the USGS. More details on the collection and interpretation of the RTK survey data are provided in the 

detailed report prepared by the Ontario Ministry of Natural Resources and Forestry’s Provincial Mapping 

Unit, included in Appendix H (Provincial Mapping Unit, 2019). 

For the analysis conducted herein, the elevation of each RTK check point is compared to the 

corresponding elevation value from each of the lidar datasets. The difference between the check point 

elevation and the lidar elevation is the vertical error for that checkpoint. Errors for all checkpoints are 

then summarized via various statistical measures to report overall error, as well as error by different cover 

types. In the Ontario guidelines, there are two methods used to determine the vertical accuracy of a given 

elevation dataset: non-vegetated vertical accuracy (NVA) and vegetated vertical accuracy (VVA).  

NVA is assessed using the RMSE of the elevation differences between the checkpoints and the lidar data; 

however, the RMSE-based NVA calculation is a parametric test, meaning that it is expected that the 

distribution of vertical errors exhibits a normal distribution. To check for a normal distribution, the Mean 

Vertical Error (MVE) is calculated as the arithmetic average of the check point errors (Eq. 7). If the MVE 

does not equal 0, then the normal distribution assumption does not apply to the RMSE calculation, and 

the use of the RMSE as an accuracy measure is not supported. Moreover, the ASPRS recommends that if 

MVE exceeds 25% of the target accuracy (which was10 cm for this project),  Non-zero values for MVE 

can be caused by gross errors or blunders, systematic errors associated with the process of the check point 

data or the lidar data itself, and the presence of vegetation at control points. However it must be noted 

that, errors for lidar data are rarely normally distributed (Höhle and Höhle, 2009). In the event that the 

RMSE is deemed to not be an appropriate accuracy measure, Ontario’s guidelines recommend that the 

VVA approach be used as an alternative.  

MVE is calculated as follows: 

     
 

 
       

   
                                                             (Eq. 8) 

Where:  i is the index of points, 

 N is the number of points, 

    are the elevations measured from the lidar data, 

   
  are the elevations from the checkpoint data. 

 

NVA is typically assessed using a 95% confidence level of the RMSE of the check point errors and is 

calculated as follows:  

                                                                          (Eq. 9) 

 

where          
 

 
        

    
    

  i, N ,   ,   
  are as for Eq. 7 
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In contrast to NVA, the assessment of vertical accuracy for vegetated checkpoints does not make an 

assumption of a normal distribution for the elevation differences between the checkpoints and the lidar. 

VVA is computed as the 95
th
 percentile of the absolute value of vertical errors in all vegetated land cover 

categories combined. VVA is calculated as follows: 

                                                                             (Eq. 10) 

where         
      

   for i = 1 to N, reorderd from smallest to largest, 

  r = 1 + ((N-1) * 0.95) 

   (the 95
th
 percentile rank), and 

  j = integer (r),  

  k = r – j, 

i, N ,   ,   
  are as for Eq. 7 

 

According to the ASPRS guidelines, a lidar dataset that is deemed to meet a 10-cm Vertical Accuracy 

Class (the target accuracy class for this project’s assessment) would have an RMSE for non-vegetated 

checkpoints that was < 10 cm and an NVA that was < 19.6 cm (ASPRS, 2014). The VVA must be < 29.4 

cm for the lidar data to meet the 10-cm Vertical Accuracy Class standard. 

A point based assessment using the RTK data provides one approach to quantify the accuracy of the lidar 

data, however we were also interested in how the characteristics of the lidar impacted the derived digital 

terrain model (DTM). To this end, the Provincial Mapping Unit undertook a qualitative assessment of the 

DTMs to determine any issues in terrain characterization stemming from differences in the density and 

distribution of ground returns. The qualitative assessment was undertaken in seven selected sub-areas of 

the PRF, as detailed in the report included in Appendix H. For each area and each lidar dataset, a grey 

scale hillshade of the DTM was generated with an light source azimuth angle of 320 degrees, and a z-

factor of 5. 

 

5.5 Results 

5.5.1 RTK survey results 

The MVE calculations indicate that the assumptions supporting the use of RMSEZ to assess absolute 

accuracy are not valid (i.e. the mean of the vertical error values were not zero; Table 26). In addition, all 

four lidar datasets have MVE values in excess of the limit recommended by the ASPRS, that being 25% 

of specified RMSEZ for the project or 2.5 cm (Table 27). 
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Table 27. Mean Vertical Error (MVE) and RMSEz for non-vegetated checkpoints. 

Non-vegetated check points 
 (N = 79 / 85) 

2012 LML 2018 SPL 2019H SPL 2019L SPL 

MVE (cm) -11 / -11.2 - 6.0 / -6.1 -8.6 -8.3 

RMSEz (cm) 12 / 12.1 7.4 / 7.4 9.5 9.2 

 

In the absence of gross errors or blunders in the RTK data that may influence the MVE, the Ontario 

guidelines recommend using the non-parametric test for NVA, as is used for the VVA Calculation 

(OMNR, 2016). The non-parametric test uses the 95
th
 percentile to assess accuracy (as per the VVA 

calculation in Eq. 9). For the 10 cm Vertical Accuracy Class, the parametric NVA cut-off value for the 

95
th
 percentile is 19.6 cm, whereas the non-parametric VVA cut-off value for the 95

th
 percentile is 29.4 

cm. As indicated in Table 28, the 95
th
 percentiles for all four lidar datasets were within the specified limits 

for the 10 cm Vertical Accuracy Class for both non-vegetated and vegetated check points. Accuracies 

varied by cover type, with low vegetation, mixedwood forests, and black spruce stands having the largest 

errors for the 2018 SPL data. Based on the results reported in Table 28, it was concluded that the four 

lidar datasets tested met the accuracy standards for Ontario Digital Geospatial Data for a 10 cm Vertical 

Accuracy Class. Actual Non-vegetated Vertical Accuracy (NVA) was found to be +/- 19.6 cm at the 95% 

percentile. Actual Vegetated Vertical Accuracy (VVA) was found to be +/- 29.4 cm at the 95% percentile.  

 

Table 28. 95
th

 percentile of errors between RTK check points and lidar data elevations, by cover type. 

Category 
95

th
 Percentile  

(sample size)
*
 

2012 LML 2018 SPL 2019H SPL 2019L SPL 

Non- 
Vegetated 

NVA (79/85) 17.4 / 17.3 14.2 / 13.8 16.3 14.1 

Vegetated VVA (220/235) 18.5 / 18.7 23.4 / 24.0 16.9 14.5 

Road 

Gravel Road (47/53) 18.3 / 18.7 10.8 / 11.0 18.6 14.8 

Asphalt Road (32) 16.2 15.1 12.4 13.7 

Conifer 

Black Spruce (37) 18.8 29.5 15.0 13.8 

Jack Pine (15) 7.7 7.4 15.1 7.0 

Conifer Plantation (21/36) 20.1 / 20.1 9.8 / 15.8 14.5 11.9 

Red / White Pine (27) 17.4 16.2 20.8 13.6 

Hardwood 
  

Intolerant Hardwood (37) 19.7 17.6 15.6 14.9 

Tolerant Hardwood (35) 18.1 15.6 14.0 13.6 

Other 
Mixedwood (34) 16.3 26.5 19.3 17.6 

Low Vegetation (14) 13.0 24.7 5.0 8.7 

Note that some of the RTK checkpoints did not fall within the boundaries of the 2019 SPL collection, therefore statistics are 
shown for both the intersecting footprint sample size (i.e. the smaller N) and the entire dataset (i.e. the larger N) where 
applicable. 



Exploring the innovation potential of single photon lidar for Ontario’s eFRI—KTTD 5B-2018 

43 

 

 

5.5.2 Assessment under different canopy cover densities 

The number of RTK checkpoints in each of the LPI classes varied (Figure 14), with the leaf-on 

acquisitions (2012 LML and 2018 SPL) having markedly more RTK check points with < 10% of returns 

within ± 15 cm of the ground surface. Conversely, the leaf-off acquisitions (2019H SPL and 2019L SPL) 

had more checkpoints with ≥ 30% of returns within ± 15 cm of the ground surface. Of note, the SPL data 

acquired at the higher altitude in 2019 (~3800 m) had more near-ground returns than the lower altitude 

acquisition (~1800 m). The median LPI for each of the lidar dataset, by checkpoint cover class, is shown 

in Figure 15; all 3 SPL datasets have a greater LPI for the non-vegetated classes (asphalt and gravel). 

Conversely, the LPI for the 2018 SPL is lower than the 2012 LML for all vegetated categories, with the 

exception of check points that were dominated by jack pine and low vegetation. Also of note, the median 

LPI for the 2019 SPL leaf-off data acquired at the higher altitude (3800 m) is greater than the median LPI 

for the 2019 SPL leaf-off data acquired at the lower altitude (2000 m). This contrasts with the expectation 

that a lower acquisition altitude would translate into a greater percentage of returns from near the ground 

surface. 

 

Figure 14. Distribution of RTK checkpoints within each of the LPI classes. 
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Figure 15. The median LPI value for each lidar dataset, by cover type. Boxes represent 25%-75% and whiskers 

indicate non-outlier range. 

In terms of accuracy, the 95
th
 percentile of differences between the RTK check points and lidar elevations 

indicates no particular relationship between the LPI (i.e. degree of penetration of the lidar pulses) and the 

accuracy of the captured elevation (Figure 16), except for the 2012 LML lidar, whereby the 95
th
 percentile 

decreased with an increasing percentage of near-ground returns.  
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Figure 16. 95
th

 percentile of difference between RTK Vegetation Vertical Accuracy (VVA), by Lidar Penetration 

Index (LPI) class. 

 

5.5.3 Qualitative assessment of derived DTM 

The different characteristics of the 2018 SPL data (i.e. more first returns, fewer ground returns) translate 

into artifacts in the derived digital terrain model (DTM) as well. Overall, the qualitative assessment 

concluded that all of the lidar DTMs were of good quality, with some minor issues, which included 

anomalies such as divots, spikes, and tinning artifacts. Artifacts in the triangular irregular network (TIN) 

used to generate the DTM are caused by a lower density of ground returns, and the greater the spacing the 

more interpolation and the larger the TIN facets. Similar issues were identified by CCMEO in their 

preliminary assessment of the 2018 SPL data for the PRF (CCMEO, 2019). Not surprisingly, the leaf-off 

SPL acquisitions produced better quality DTMs (Figure 17); however any difference in quality between 

the leaf-off SPL acquired at 3800 m versus 2000 m was marginal. Larger TIN facets are particularly 

evident in the 2018 SPL data at this particular site (Figure 18), which is located within tolerant hardwood 

and mixedwood forest types. These tinning artefacts are also influenced the complexity of the terrain, 

with areas of steeper slopes under denser cover being particularly problematic. 
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Figure 17. Hillshade of digital terrain model (DTM) generated for each of the four lidar acquisitions. The 2012 

linear mode lidar (LML) and the 2018 single photon lidar (SPL) were acquired in leaf-on conditions. The 2019 SPL 

data were acquired in leaf-off conditions from an altitude of 3800 m (2019H SPL) and 2000 m (2019L SPL). 
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Figure 18. An area with dense tolerant hardwood and mixedwood forest types (A). Large TIN facets are visible in 

the SPL 2018 hillshade (B). 

 

5.6 Summary 

To quantify the comparative performance of SPL in characterizing terrain under varying forest types and 

canopy densities, RTK survey data was used to investigate the vertical accuracy of four different lidar 

acquisitions: 1 leaf-on SPL (2018); 2 leaf-off SPL (2019 at 3800 m and 2000 m); and 1 leaf-on LML 
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(2012). We explored and quantified the characteristics of the different datasets and examined how those 

characteristics impacted the derived DTM. Overall, all four lidar lidar datasets that were tested met the 

vertical accuracy standards for Ontario Digital Geospatial Data for a 10 cm Vertical Accuracy Class. The 

leaf-off SPL data acquired at an altitude of 2000 m was generally the most accurate for both non-

vegetated and vegetated cover types. For the majority of cover types, the leaf-on SPL data acquired in 

2018 had greater accuracy than the 2012 LML data, with the exception of the black spruce, mixedwood, 

and low vegetation categories. 
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6. Objective 3: Identify and explore incremental advantages or innovations for the eFRI 

program resulting from unique SPL data characteristics 

The third and final objective of this project was to determine if the characteristics of the SPL data, 

particularly the increased point density, provided any advantages over LML data for the eFRI program. 

Two specific applications were investigated: tree species identification and detection and characterization 

of small trees underneath the main canopy. 

6.1 Individual tree detection and species classification 

In this analysis, species identification at the individual tree crown (ITC) level was investigated for 2012 

LML and 2018 SPL data (Figure 19), representing a subset of the work of Prieur et al. (In review). 

  

 

Figure 19. Comparison of the 2012 linear-mode lidar (LML) and 2018 single-photon lidar (SPL). 

 

Figure 20 provides an overview of the workflow used to process the lidar data, generate the classification 

and compare the species classification outcomes. An important precursor to species mapping at the 

individual tree level is the identification and accurate delineation of individual tree crowns. The 2012 

ALS data was used for individual tree crown ITC delineation using a software package developed at 

Université du Québec à Montréal (SEGMA 0.3). A 50 cm canopy height model (CHM) was extracted 

from the classified 2012 LML point cloud. SEGMA finds the local maximum (treetop) within a certain 

neighbourhood then uses an inverse watershed algorithm and region-growing approach to define the 

crown. These individual crowns (as well as calculated attributes such as diameter, area, height, etcetera) 

are saved as polygons in a shapefile. These polygons, representing individual tree crowns, are then 

identified in the field (using a GPS and a tablet) to accurately locate and record the crown location and 
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identify the species. These field data are then used as training data for the random forest classifier. Of 

note, it is known that there will be errors of omission and commission in the delineation of the individual 

tree crowns, as well as in the field identification of crowns, especially in dense hardwood forests. 

Delineation challenges, combined with challenges in obtaining accurate GPS locations under dense 

hardwood canopies, further complicate accurate and automated species identification approaches. In order 

to mitigate these effects, only the 2012 LML was used for segmentation, and the same crowns were 

carried forward for classification of the 2018 SPL data. In this way, the same features (crowns) are used 

throughout the analysis, and allow for classification accuracy to be assessed independent of delineation 

accuracy.  

 

Figure 20. Overview of approach used in automated species mapping. 

 

The number of tree crowns available for training each of the different levels of species groupings, ranging 

from the very general level of forest type (i.e. hardwood and softwood), to more detailed groupings of 

individual species, are summarized in Table 29. A spatial join is used to link these crown polygons to the 

lidar point cloud to extract individual lidar returns associated with each crown. A subset of the lidar point 

cloud features, both structural (based on X, Y, Z information only) and spectral (intensity) were 

calculated for each crown, as described in Budei et al. (2018). Feature selection was used to develop 
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parsimonious classification models. First, correlated features (i.e. r ≥ 0.9) were identified and the feature 

with the highest random forest mean decrease in accuracy (MDA) was removed in order to keep the more 

robust feature of the pair. Second, the R package VSURF (Variable Selection Using Random Forest; 

Genuer et al. 2015) was used to select the desired number of features. Classifications using all features, a 

subset of 25 features, and a subset of 15 features were tested. 

 

Table 29. Sample size (number of individual tree crowns) available for training each of the different groupings (i.e. 

forest type, functional group, 12 species groups, and 4 species groups). 

Forest Type 2012 LML 2018 SPL 

Hardwood 683 596 

Softwood 673 546 

Functional Group 2012 LML 2018 SPL 

Hardwood 308 262 

Intolerant hardwood 375 334 

Other softwood 157 114 

Pine 345 302 

Spruce 171 130 

12 Species 2012 LML 2018 SPL 

Ash (Black/White) 81 66 

Basswood 56 48 

American Beech 67 59 

Birch (White/Yellow) 89 77 

Eastern White Cedar 44 36 

Balsam Fir 69 43 

Eastern Larch 44 35 

Maple (Red/Sugar) 185 155 

Red Oak 70 52 

Pine (Red/White) 345 302 

Trembling Aspen 135 139 

Spruce (Black/White) 171 130 

4 Species 2012 LML 2018 SPL 

Maple 185 155 

Pine 345 302 

Poplar 135 139 

Spruce 171 130 

 

Table 30 shows random forest Out-Of-Bag (OOB) accuracy for the average of 25 independent 

classification runs (using the features selected as described above) for the various species configurations 

shown in Table 29. The randomForest package in R (Liaw and Weiner, was used to perform the 

classifications. Down sampling of minority classes was used to balance the class counts for the random 

forest models, as unbalanced sample counts can lead to biased results towards the majority class. Overall, 

a combination of 3D and intensity features resulted in the highest accuracy for both the 2012 LML and 

2018 SPL data for all levels of species groupings. In general, accuracy results are comparable for both 

sensors, with 2018 SPL results lower than those of the 2012 LML, particularly in the case where only 

intensity values are used in the classification. Hardwood species identification at the individual tree crown 

level remains challenging as shown by the results in the 12 species case, whereby the best overall 

accuracy was ~51%. Improved results were obtained for both 2012 LML and 2018 SPL data for the 

higher level classifications of functional groups and forest types. While it is possible that the 2018 SPL 
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results are lower in part because the individual tree crowns from 2012 were carried forward for the 2018 

classifications, thereby resulting in a temporal decorrelation between the structural and spectral features 

used for the classification and the morphology of the crowns themselves, results for a multispectral lidar 

acquisition in 2016 are similar to those of 2012 LML (results not shown). 

 

Table 30. OOB accuracy for species classifications, averaged over 25 independent classification iterations. Results 

are shown for different feature combinations: structural metrics only (3D only), intensity metrics only (I only), and 

both spectral and intensity metrics combined (3D + I). 

 2012 LML 2012 LML 2012 LML  SPL 2018 SPL 2018 SPL 2018 

 3D ONLY I ONLY 3D + I  3D ONLY I ONLY 3D + I 

 Forest Type 

All features (N) 84.0 (24) 76.2 (8) 86.4 (31)  80.1 (17) 59.1 (6) 82.9 (23) 

25 features   86.1     

15 features 84.1  86.3  80.1  82.7 

 
Functional Groups 

All features (N) 55.7 (24) 52.5 (8) 68.9 (31)  50.4 (17) 43.3 (6) 63.6 (23) 

25 features   67.4     

15 features 55.3  66.2  50.0  64.4 

 
12 Species 

All features (N) 38.9 (24) 33.2 (8) 50.7 (31)  37.8 (17) 25.8 (6) 44.5 (23) 

25 features   51.3     

15 features 38.3  48.7  38.4  44.8 

 
4 Species 

All features (N) 65.4 (28) 64.7 (8) 75.1 (35)  64.5 (19) 50.1 (6) 68.3 (24) 

25 features 65.5  74.3     

15 features 63.6  74.2  63.5  68.1 

 

These results suggest that the nature and/or distribution of SPL returns may influence the accuracy of the 

classification approach presented. As shown in Table 30, after removing correlated features, 31–35 

features were remaining for the ALS 2012 dataset, whereas only 23–24 features remain for the SPL 2018 

dataset, indicating that the features in the SPL 2018 case are more correlated with each other. This results 

in fewer features available for use in the classifier, as well as in lower accuracy for the SPL 2018 data. 

This effect increases when features used in classification are further separated into structural and intensity 

metrics. The average difference in accuracy between classifications using structure-only features and 

intensity-only feature classification is 4% for the 2012 LML data, compared to 14% for the SPL 2018 

data.  

Lidar intensity, even in airborne linear systems, is a black-box value calculated by each instrument 

manufacturer’s proprietary methods, confounding meaningful interpretations of these values. Currently, 

even less is known about the intensity values associated with the SPL data (e.g., how they are calculated, 

what they represent). Given this, it is difficult to provide a meaningful interpretation of the species 

classification results using the intensity features exclusively. Other differences were observed in the 

distribution of 1
st
 and 2

nd
 returns between the 2012 LML and 2018 SPL data, with SPL having a markedly  

greater proportion of first returns as compared to the 2012 LML (Table 26; Figure 21). One of the most 
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important features in the 15 feature classification scenarios (Table 30) for the 2012 LML data is a feature 

that characterizes the mean height difference between the 1
st
 and 2

nd
 returns. No analogous feature is 

available for the 2018 SPL data. 

The results presented here indicate that for the ITC species identification methodology applied herein, 

certain characteristics (namely intensity and return distribution) of the SPL point cloud may result in 

lower species classification accuracies when compared to linear mode lidar.  

 

Figure 21. Profiles of the three lidar acquisitions in the Petawawa Research Forest. 
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6.2 Small tree detection and characterization 

6.2.1 Small tree plot data 

A total of eight small tree plots were established in four of the forest types within PRF (Table 31). These 

plots had a radius of 3.99 m and were designed to measure all commercial species with a DBH ≥ 2.5cm 

and < 9.1 cm (Appendix C). A random height sample was conducted for a subset of 5 trees in each small 

tree plot. The objective of establishing these small tree plots was to determine the capacity of SPL data to 

detect and characterize small trees in different forest types and overstorey conditions. 

 

Table 31. Summary of small tree plot data. 

 

  

Forest type 
  DBH (cm) Height (m) 

Small tree species 
Plot 

Number of 
small trees 

Mean Std. Dev. Mean Std.Dev. 

Natural pine PRF185 11 4.35 2.07 8.56 5.92 
Red maple, balsam fir, 

striped maple 

Plantation 

PRF010 12 4.61 2.44 13.05 2.75 
White birch, red maple, 
trembling aspen, alder, 

larch 

PRF209 3 1.73 0.25 3.00 1.05 Balsam fir, red maple 

Natural 
hardwood 

PRF101 8 2.16 0.68 4.36 1.25 
Ironwood, beech, yellow 

birch, white pine 

PRF040 2 2.40 1.50 2.30 0.00 Sugar maple, white spruce 

PRF161 10 4.67 1.68 7.9 3.39 
Yellow birch, red maple, 

balsam fir 

Mixedwood 
 

PRF176 5 4.41 0.68 5.65 0.7 Hemlock, beech 

PRF124 15 4.10 2.71 8.3 4.24 Red maple 
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6.2.2 Natural pine stands 

PRF185 is dominated by a white pine overstorey of large mature trees with relatively open canopy 

conditions (Figure 22). In this natural pine stand, separation of the overstorey and understorey layer was 

clearly evident when visually examining the SPL data (Figure 22B). Of note, although the top of the 

secondary layer is well captured, there are insufficient returns between the top of the secondary layer 

(~9m) and the ground to enable characterization of the small trees in this secondary layer with any detail, 

or to compare the number of small trees measured in the ground plots. Only 39.68% of 1 m cells within 

PRF185 had ground returns (Table 32). A total of 11 trees were recorded in the small tree subplot PRF 

185, with a mean DBH of 4.35 cm (σ = 2.07 cm) and a mean height of 8.56 m (σ = 5.92 m).  

 

Figure 22. The full PRF185 plot (A; 14.1 m radius; blue = lower canopy heights, red = higher canopy heights) with 

a 10 m wide profile (red box and B) with SPL returns classified as ground (pink) and low (light green) and high 

(dark green) vegetation. Photo taken at plot centre (C). 
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Table 32. Characterization of penetration capacity of SPL data in plots sampled for small trees. 

Calibration Plot 
COUNT of 1 m 

cells in plot with 
returns (all) 

COUNT of 1 m 
cells in plot with 
ground returns 

% of 1 m cells in 
the plot with 

ground returns 

PRF185 625 248 39.68 

PRF010 618 530 85.76 

PRF209 618 370 59.87 

PRF101 622 149 23.95 

PRF040 624 314 50.32 

PRF161 620 113 18.23 

PRF176 617 65 10.53 

PRF124 619 144 23.26 

 

6.2.3 Plantations 

PRF010 is located within a red pine plantation and had a top height of 16.5 m and a stocking of 2656 

trees per hectare. A total of 12 small trees (primarily deciduous) were measured on the subplot, with an 

average DBH of 4.61 cm and an average height of 13.05 m. Small trees in this plot were therefore 

proximal to the upper canopy layer. The foliage of these small trees likely contributed to the intermediary 

returns evident in the SPL point cloud (Figure 23B). PRF010 is characterized by a high density of returns 

in the upper canopy; however the red pines have relatively narrow crowns so the canopy itself is 

relatively open. In this plot, the sparse distribution of SPL returns through the canopy is indicative of the 

absence of a well organized or dense secondary layer or understorey. As a result, and in contrast to the 

natural pine stand of PRF185, 85.76% of 1 m grid cells within PRF010 had ground returns. 

PRF209 is located in a spruce plantation with a top height of 17.8 m and a stocking of 1376 trees per ha 

(Figure 24). This plot had more understorey vegetation than its red pine counterpart (PRF010), but no 

secondary layer. Only 3 small trees were measured in PRF209 subplot, which are not captured in the SPL 

data and the canopy in this plot was fairly open, with 59.87% of 1 m grid cells in the plot having ground 

returns. 
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Figure 23. The full PRF010 plot (A; 14.1 m radius; blue = lower canopy heights, red = higher canopy heights) with 

a 10 m wide profile (red box and B) with SPL returns classified as ground (pink) and low (light green) and high 

(dark green) vegetation. Photo taken at plot centre (C). 
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Figure 24. The full PRF209 plot (A; 14.1 m radius; blue = lower canopy heights, red = higher canopy heights) with 

a 10 m wide profile (red box and B) with SPL returns classified as ground (pink) and low (light green) and high 

(dark green) vegetation. Photo taken at plot centre (C). 

 

6.2.4 Natural hardwood stands 

Small tree subplots were established in three natural hardwood stands. These stands are characterized by 

more open spaces in the canopy between mature hardwood trees, potentially allowing for increased 

penetration of the SPL returns into the canopy. PRF101and PRF040 (Figure 25) are very similar. PRF101 

had 8 small trees with an average DBH of 2.16 cm and an average height of 4.36 m. Top height was 23.9 

m in PRF101 and 20.8 m in PRF040. Penetration of SPL to the ground was different between these two 

plots however. PRF101 had 23.95% of 1 m grid cells with ground returns, whereas PRF040 had 50.32% 
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of 1 m grid cells with ground returns. PRF161 had a similar top height (21.02 m) to the other natural 

hardwood stand, but a higher stocking (2440 trees per ha). This represented a younger, more even-aged 

cohort with a more uniform, denser canopy. A total of 10 small trees were measured in this plot with an 

average DBH of 4.67 m and an average height of 7.9 m. As a result of the dense overstorey and general 

lack of gapiness between crowns (when compared to PRF101 and PRF040), only 18.23% of 1 m grid 

cells in this plot had ground returns. 

 

Figure 25. The full PRF040 plot (A; 14.1 m radius; blue = lower canopy heights, red = higher canopy heights) with 

a 10 m wide profile (red box and B) with SPL returns classified as ground (pink) and low (light green) and high 

(dark green) vegetation. Photo taken at plot centre (C). 
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6.2.5 Mixedwood stands 

For mixedwood stands canopy conditions are complex. PRF124 is dominated by tall spruces, with many 

small red leaf maple trees in the second layer, with an average height of 8.3 m (Figure 26). The canopy is 

fairly open, allowing for a vertical distribution of SPL pulses through the canopy (Figure 26B). In 

contrast, the canopy in PRF 176 (not shown) is dominated by eastern hemlock, beech, and maple, with 

fewer small trees below the main canopy. 

 

Figure 26. The full PRF124 plot (A; 14.1 m radius; blue = lower canopy heights, red = higher canopy heights) with 

a 10 m wide profile (red box and B) with SPL returns classified as ground (pink) and low (light green) and high 

(dark green) vegetation. Photo taken at plot centre (C). 
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6.2.6 Small tree detection 

Regardless of forest type, we found that SPL data had significantly increased point density at the top of 

canopy; however, returns from secondary canopy layers and understorey depended on the canopy density, 

type, and configuration of trees in the overstorey. In dense, closed canopies, such as those found in red 

and white pine plantations, returns were primarily from the top of canopy, with sparse returns through the 

vertical profile of the canopy. In contrast, canopies of natural pine stands were more open, allowing for 

identification of emerging secondary layer in the stand. Direct extraction of small understorey trees within 

the subplots using the SPL data was not possible, due to a lack of returns through the full vertical profile 

of the canopy. Of note, we found that the amount of SPL returns in the lower canopy was not directly 

related to the number of small trees or amount of understorey measured in the field subplots, because the 

density and configuration of the overstorey directly impacted the amount of returns from the secondary 

layer/understorey. In other words, a dearth of returns through the vertical canopy profile was not 

necessarily indicative of the presence or amount of vegetation found underneath the main canopy. The 

percentage of SPL returns within designated height strata of 0–2 m, 2–5 m, 5–10 m, and 10–20 m were 

plotted against the number of small trees recorded in each small tree subplot and against basal area 

(Figure 27). No clear relationship was observed. Likewise, similar issues impact the number of ground 

returns found in the plots and non-vegetated surface objects such as rocks and stumps were not visible 

from SPL data.   

 

 

Figure 27. Number of small trees plotted against proportion of SPL returns found in specific height strata (0–2 m, 

2–5 m, 5–10 m, 10–20 m). 

 

6.3 Summary 

For the final objective of this project, we explored any advantages that SPL data might offer for Ontario’s 

eFRI program, specifically examining the use of SPL data for species classification and the identification 

of small trees. For species classification at the individual tree level, we found that the SPL data provided 
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results that were inferior to those generated using LML data, and attribute this result to specific 

characteristics of the SPL data, including the dominance of first returns at the top of canopy, and the lack 

of returns distributed through the full vertical profile of the canopy. Detection of small trees was likewise 

hampered by the limited distribution of returns through the full vertical profile of the canopy. In some of 

the plots examined, a secondary layer under the main canopy could be readily identified, but not 

individual trees and the capacity to identify a second layer depended on the density and configuration of 

the overstorey canopy, which varied by forest type. 

 

7. Conclusion 

The objective of this project was to explore the innovation potential and assess the capacity of SPL 

technology to support enhanced forest inventories and terrain characterization in forest conditions. The 

test site for this project was located at the Petawawa Research Forest and adjacent forest lands of the 

Canadian Nuclear Laboratories, representing a total area of approximately 15,000 ha. Forests in the study 

area include complex multi-layer stands of varying canopy densities, assemblages of various deciduous 

and coniferous tree species, and varying silvicultural and management histories. As such, these forests 

represent a challenging target for enhanced forest inventories and are an ideal location at which to 

benchmark new technologies. Extensive ground data were acquired for this project in order to enable the 

development of robust models for the forest attributes of interest, as well as for validating model 

estimates at the stand level, and for assessing the accuracy of the terrain elevations under varying 

vegetation conditions.  

Overall, we found that the use of SPL data in an area-based approach provided reasonably accurate 

estimates of forest inventory attributes of interest and that the results achieved were comparable to those 

achieved using LML data in the same study site. Likewise, we found that the 2018 SPL data, acquired 

during leaf-on conditions, met the vertical accuracy standards for Ontario Digital Geospatial Data for a 10 

cm Vertical Accuracy Class. However, the lower number of ground returns in the 2018 SPL data under 

some dense canopy configurations resulted in artifacts in the derived DTM, which were less evident in the 

2019 leaf-off SPL acquisitions. The high point density of the SPL data acquired under leaf-on conditions 

did not translate into a high density of ground points under dense vegetation and as a result, there may be 

impacts on the level of spatial detail that can be captured in the derived digital terrain model. Lastly, there 

are notable differences in the SPL point clouds, primarily the lack of returns distributed through the full 

vertical profile of the canopy, which may impact applications that require that distributions of points (e.g. 

species identification, detection of small trees under the canopy). Further research should continue to 

explore issues and opportunities associated with the use of SPL point clouds for a range of forest 

management information needs, such as fire fuels mapping and habitat characterization, in a variety of 

forest environments. 
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Appendix A: Technology Transfer and Knowledge Exchange Activities 

 

 

  

DATE LOCATION DESCRIPTION 

February 6, 2019 
Online 
(national; 
recorded) 

Canadian Institute of Forestry (CIF) e-Lecture 
 
Exploration of the innovation potential of single-photon LiDAR for Ontario’s 
eFRI (Murray Woods) 
 
PDF: http://www.cif-ifc.org/wp-content/uploads/2018/12/Woods_Sinclair-
CIF_electure_Feb6_2019_-Exploration-of-SPL_Feb6_FINAL.pdf 
 
Video: http://cif-ifc.adobeconnect.com/ptu6q4capftm/ 
 

October 4, 2019 Canmore, AB 

Annual National Forest Inventory Collaborator’s Meeting 
 
Exploration of the innovation potential of single-photon LiDAR for Ontario’s 
eFRI (Joanne White) 
 

October 6, 2019 Pembroke, ONT 

Canadian Institute of Forestry (CIF) Annual General Meeting 
 
Exploration of the innovation potential of single-photon LiDAR for Ontario’s 
eFRI (Murray Woods) 
 

October 16, 2019 
Online 
(national; 
recorded) 

Canadian Institute of Forestry (CIF) e-Lecture 
 
New LiDAR technologies on the horizon: SPL and Multi-spectral LiDAR 
(Joanne White) 
 
PDF: http://www.cif-ifc.org/wp-
content/uploads/2019/10/AWARE_CIF_eLecture_New_LIDAR_Technologies
_on_the_Horizon.pdf 
 
Video: http://cif-ifc.adobeconnect.com/pivbgfusx8is/ 
 

November 26, 2019 Kenora, ONT FPInnovations-CIF Workshops: Innovations in LiDAR Acquisition and 
Implementation to Improve Operational Efficiency and Fibre Supply 
Precision 
 
Seeing the forest floor through the trees: An evaluation of SPL’s ability to 
measure ground elevation (Murray Woods) 
 
Exploring the innovation potential of Single Photon LiDAR for enhancing 
Ontario’s forest inventories (Murray Woods) 
 

November 28, 2019 
Thunder Bay, 
ONT 

January 21, 2020 Mattawa, ONT 

January 23, 2020 Sudbury, ONT 

http://www.cif-ifc.org/wp-content/uploads/2018/12/Woods_Sinclair-CIF_electure_Feb6_2019_-Exploration-of-SPL_Feb6_FINAL.pdf
http://www.cif-ifc.org/wp-content/uploads/2018/12/Woods_Sinclair-CIF_electure_Feb6_2019_-Exploration-of-SPL_Feb6_FINAL.pdf
http://cif-ifc.adobeconnect.com/ptu6q4capftm/
http://www.cif-ifc.org/wp-content/uploads/2019/10/AWARE_CIF_eLecture_New_LIDAR_Technologies_on_the_Horizon.pdf
http://www.cif-ifc.org/wp-content/uploads/2019/10/AWARE_CIF_eLecture_New_LIDAR_Technologies_on_the_Horizon.pdf
http://www.cif-ifc.org/wp-content/uploads/2019/10/AWARE_CIF_eLecture_New_LIDAR_Technologies_on_the_Horizon.pdf
http://cif-ifc.adobeconnect.com/pivbgfusx8is/
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Appendix B: Cross-walk for calibration and validation forest types and species codes 

Forest types in calibration and validation data do not use exactly the same nomenclature in all cases. 

Table B1 outlines the relative correspondence between forest types in these two data sources. 

Table B1. Cross-walk of forest types between calibration and validation data. 

Calibration Plots 
Calibration Plots 
(Abbreviation) 

Validation Stands 
Validation Stands 

(Abbreviation) 

Intolerant Hardwood Intolerant Hwd Poplar Poplar 

Lowland Conifer Lowland Con Lowland Conifer LowlandConifer 

Mid-tolerant Hardwood Mid tolerant Hwd Oak Oak 

Mixed Deciduous MIXED deciduous Mixedwood Mixedwood 

Mixed Conifer MIXED conifer Mixedwood Mixedwood 

Pine-Oak Pine Oak White Pine Managed PwManaged 

Jack Pine Plantation Pj Plant Jack Pine JackPine 

Red Pine Plantation Pr Plant Red Pine Plantation PrPlantation 

White Pine Plantation Pw Plant N/A N/A 

White pine-Red pine Pw Pr White Pine Natural PwNatural 

Spruce Sb Black Spruce BlackSpruce 

Spruce Plantation Spruce Plant N/A N/A 

Tolerant Hardwood Tolerant Hwd Tolerant Hardwood TolerantHwd 

 

Table B2. Common tree species in Ontario. 

Species Common Name Species Code Species Common Name Species Code 

American elm EW Red pine PR 

American beech BE Hard/Sugar Maple MH/MS 

Balsam fir BF Tamarack TA 

Balsam poplar PB White ash AW 

Basswood BD White Oak OW 

Black cherry CB White pine PW 

Largetooth aspen PG White birch BW 

Black ash AB White spruce SW 

Black spruce SB Willow WI 

Eastern hemlock HE Yellow birch BY 

Ironwood IW Norway Spruce SN 

Eastern red cedar CR Poplar PO 

Jack pine PJ Unknown Species  

Northern white cedar CE   

Pin cherry CP   

Trembling Aspen PT   

Red (soft) maple MR   

Red oak OR   
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Appendix C: Field plot measurement protocols 

 

Copies of the following field sampling protocols are available by request (joanne.white@canada.ca). 

 

Part 1: General field measurement protocols for calibration data 

Woods, M, MacMillan, J., Arbour, P., White, J.C. (2018). AFRIT SPL field plot remeasurement protocols 

for the Petawawa Research Forest 2018. Canadian Forest Service Internal Report, 23 pp. 

 

Part 2: Field measurement protocols for small tree plots 

Li, J. (2018). AFRIT SPL Small Tree Project. FPInnovations Internal Report, 8 pp. 

 

Part 3: Field measurement protocols for validation data 

Woods, M. (2019). 2019 Validation Data Collection Protocols for the Petawawa Research Forest.  

Canadian Forest Service Internal Report, 12 pp. 

  

mailto:joanne.white@canada.ca
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Appendix D: Detailed report on area-based modelling and predictor selection 

 

Penner, M., Woods, M. 2020. Single Photon LiDAR: Petawawa Research Forest Implementation. Final 

Report (March 18, 2020), 46 pp. 

 

Copy of report available upon request (joanne.white@canada.ca). 

  

mailto:joanne.white@canada.ca
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Appendix E: 2018 Enhanced Forest Inventory (EFI) layers for the PRF 

 

 

Figure E1. Area-based prediction of top height for PRF and CNL lands derived using SPL 2018 and ground plot 

data. 
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Appendix E (continued) 

 

Figure E2. Area-based prediction of gross total volume, merchantable stems, for PRF and CNL lands derived using 

SPL 2018 and ground plot data. 
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Appendix E (continued) 

 

Figure E3. Area-based prediction of merchantable stem volume for PRF and CNL lands derived using SPL 2018 

and ground plot data. 
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Appendix E (continued) 

 

Figure E4. Area-based prediction of basal area, merchantable stems for PRF and CNL lands derived using SPL 

2018 and ground plot data. 
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Appendix E (continued) 

 

Figure E5. Area-based prediction of merchantable stem volume for PRF and CNL lands derived using SPL 2018 

and ground plot data. 
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Appendix F: Full list of predictors used in 2012 area-based models 

Table F1. Predictors used in 2012 area-based model development. The full point-cloud was used (regardless of 

return classification). 

Attribute 
Threshold 

(m) 
Description 

MEAN 0.0 Mean height (m) 

STD_DEV95 0.0 Standard Deviation trimmed @95% 

ABS_DEV95 0.0 Absolute Standard Deviation trimmed @95% 

SKEW95 0.0 Skewness trimmed @95% 

KURTOSIS95 0.0 Kurtosis trimmed @95% 

P10 0.0 First Decile LiDAR Height (m) 

⁞   

P90 0.0 Ninth Decile LiDAR Height (m) 

D1 0.0 Cumulative percentage of the number of returns found in Bin 1 of 10 

⁞   

D9 0.0 Cumulative percentage of the number of returns found in Bin 9 of 10 

DA 0.0 First returns/ All Returns 

DV 0.0 First Vegetation Returns/All Returns 

DB 0.0 First and only return / All Returns 

VDR 0.0 Vertical Distribution Ratio = [Max−Median]/Max 

Covar 0.0  Std Dev (all Returns)/ mean(All Returns) 

CanCovar  0.0 Std Dev (First Returns Only)/ mean(First Returns Only) 

VCI 0.0 Vertical Complexity Index  

CCR 0.0 Canopy Relief Ratio (mean-Min)/(Max-Min) 

MEANT2 2.0 Mean height (m) 

STD_DEV95T2 2.0 Standard Deviation trimmed @95% 

ABS_DEV95T2 2.0 Absolute Standard Deviation trimmed @95% 

SKEW95T2 2.0 Skewness trimmed @95% 

KURTOSIS95T2 2.0 Kurtosis timed @95% 

P10T2 2.0 First Decile LiDAR Height (m) 

⁞   

P90T2 2.0 Ninth Decile LiDAR Height (m) 

D1T2 2.0 Cumulative percentage of the number of returns found in Bin 1 of 10 

⁞   

D9T2 2.0 Cumulative percentage of the number of returns found in Bin 9 of 10 

DAT2 2.0 First returns/ All Returns 

DVT2 2.0 First Vegetation Returns/All Returns 

DBT2 2.0 First and only return / All Returns 

VDRT2 2.0 Vertical Distribution Ratio = [Max−Median]/Max 

CovarT2 2.0  Std Dev (all Returns)/ mean(All Returns) 

CanCovar T2 2.0 Std Dev (First Returns Only)/ mean(First Returns Only) 

VCIT2 2.0 Vertical Complexity Index  

CRRT2 2.0 Canopy Relief Ratio (mean-Min)/(Max-Min) 
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Table F1 (continued). Predictors used in 2012 area-based model development. The full point-cloud was used 

(regardless of return classification). 

Attribute 
Threshold 

(m) 
Description 

RuggedMean  SAGA Ruggedness Mean from a 50cm LiDAR CHM 

RuggedSTD  SAGA Ruggedness STD from a 50cm LiDAR CHM 

RoughMean  SAGA Roughness Mean from a 50cm LiDAR CHM 

RoughSTD  SAGA Roughness STD from a 50cm LiDAR CHM 

TexMn5Mean  PCI Texture Mean for a 5x5 window 

TexMn5STD  PCI Texture Mean STD for a 5x5 window 

TexMn11Mean  PCI Texture Mean for a 11x11 window 

TexMn11STD  PCI Texture Mean STD for a 11x11 window 

TexMn25Mean  PCI Texture Mean for a 25x25 window 

TexMn25STD  PCI Texture Mean STD for a 25x25 window 

Var5Mean  PCI Texture Variance Mean for a 5x5 window 

Var5STD  PCI Texture Variance STD for a 5x5 window 

Var11Mean  PCI Texture Variance Mean for a 11x11 window 

Var11STD  PCI Texture Variance STD for a 11x11 window 

Var25Mean  PCI Texture Variance Mean for a 25x25 window 

Var25STD  PCI Texture Variance STD for a 25x25 window 

CB2 0.0 Cumulative percentage of Vegetation returns 0-2 

⁞   

CB46 0.0 Cumulative percentage of Vegetation returns 0-46m 

S2 0.0 % of vegetation returns in slice 0-2m 

⁞   

S46 0.0 % of vegetation returns in slice 44 - 46m 

CC2  Crown closure (%) based on percentage of 2m raster cells containing vegetation returns >2m 

⁞   

CC46  Crown closure (%) based on percentage of 2m raster cells containing vegetation returns >46m  
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Appendix G: Random forest variable importance for 2012 and 2018 area-based model 

Top predictors for key forest inventory attributes in 2012 area-based models. 

Table G1. Variable importance scores for 2012 EFI area-based models.  

For variable descriptions, see Appendix F, Table F-1. 

Merchantable 
Basal Area 
(Ba_merch) 

Merchantable 
DBHq 

(DBHq_merch) 

Merchantable stem 
volume (MVOL) 

Gross Total 
Merchantable Volume 

(TVOL) 

CB6 P70T2 RoughMean Mean 

CCR P80T2 P70 P70 

CB8 CB22 RuggedMean P60 

RuggedSTD CB24 P60 RoughMean 

P40 VCI Mean TexMn11Mean 

P60 P80 CC22 CC20 

D1 S24 CB20 RuggedMean 

RoughStd P60 CC20 TexMn5Mean 

CANCOVAR S16 CC26 P50 

CC6 CB20 CC14 CC22 

 

As noted in Section 4.4, forest inventory attributes in the 2018 EFI were either predicted directly (e.g. 

DBHq_merch, BA_all), or were derived from other attributes that were predicted directly (constrained by 

VBAR ratios (i.e. BA_merch, TVOL_merch, and MVOL). Dependencies between predicted and derived 

(target) attributes are listed in Table G2. The top 10 predictors (based on Random Forests variable 

importance scores) are listed in Table G3. 

Table G2. Relationship between predicted and derived (target) attributes. 

Target Attribute Predicted Attribute Dependencies 

DBHq_merch DBHq_merch None 

TVOL_all TVOL_all None 

BA_all BA_all None 

BA_merch BA_merch_ratio BA_all 

TVOL_merch VBAR_tvol_ratio TVOL_all, BA_merch_ratio 

MVOL VBAR_mvol_ratio  pred_TVOL_merch, VBAR_MVOL_ratio 

 

Table G3. Top 10 lidar predictors for the 2018 area-based models. For variable descriptions, refer to Table 5. 

Merchantable 
DBHq 

(DBHq_merch) 

Gross Total 
Volume All 
(TVOL_all) 

Basal Area All 
(BA_all) 

Basal Area 
Merch ratio 

VBAR_TVOL_ratio VBAR_MVOL_ratio 

a_d10-12 a_p70 a_p50 a_d4_6 a_d4_6 a_std_95 

a_d14-16 a_p60 a_p40 a_d2_4 a_d2_4 a_p99 

a_d12-14 a_p50 a_LPI_15 a_d6_8 a_d6_8 a_dns_25m 

a_std_95 a_qav a_b70 a_d8_10 a_b10 a_d14-16 

a_p80 a_dns_25m a_p05 a_b10 a_b50 a_p90 

a_dns_25m a_p80 a_p60 a_d10_12 a_b30 a_b10 

a_dns_20m a_p90 a_avg a_std_95 a_d8_10 a_d28-30 

a_p90 a_p95 a_qav a_qav a_b40 a_dns_15m 

a_p60 a_avg a_b50 a_ske_95 a_kur_95 a_p95 

a_p99 a_dns_15m a_dns_8m a_LPI_15 a_dns_2m a_p80 
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Appendix H: Detailed report on accuracy of SPL for terrain characterization 

 

Ontario Ministry of Natural Resources and Forestry. (2020). Petawawa Research Forest Single Photon 

Lidar 2018–2019 Accuracy Assessment. Provincial Mapping Unit, Mapping & Geomatics Services 

Section, Mapping and Information Resources Branch, Corporate Management and Information Division. 

Internal Report. 

 

Copy of report available upon request  (joanne.white@canada.ca). 
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